Depression is a debilitating mental illness, one of the most prevalent worldwide. MicroRNAs have been studied to better understand the biological mechanisms that regulate this disease. This study review systematically the literature to identify which microRNAs are currently being associated with depression and their related pathways. The electronic search was conducted in PubMed, Scopus, Scielo, ISI Web of Knowledge, and PsycINFO databases, using the search terms "Depressive Disorder" or "Depression" and "MicroRNAs". After, microRNAs that were up and down-regulated in depression were analyzed by bioinformatics. We observed that among the 77 microRNAs cited by included studies, 54 had their levels altered in depressed individuals compared to controls, 30 being up-regulated and 24 down-regulated. The bioinformatics analysis revealed that among the up-regulated microRNAs there were 81 total and 43 union pathways, with 15 presenting a significant difference. Among the down-regulated microRNAs, 67 total and 45 union pathways were found, with 14 presenting a significant difference. The miR-17-5p and let-7a-5p were the most frequently found microRNAs in the statistically significant pathways. In this study a panel of altered microRNAs in depression was created with their related pathways, which is a step towards understanding the complex network of microRNAs in depression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996133 | PMC |
http://dx.doi.org/10.1016/j.jchemneu.2019.101650 | DOI Listing |
PLoS One
January 2025
Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.
View Article and Find Full Text PDFJ ECT
January 2025
Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia.
Objectives: Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression (TRD), even though the molecular mechanisms underlying its efficacy remain largely unclear. This study aimed, for the first time, to analyze plasma levels of miRNAs, key regulators of gene expression, in TRD patients undergoing ECT to investigate potential changes during treatment and their associations with symptom improvement.
Methods: The study involved 27 TRD patients who underwent ECT.
Adv Sci (Weinh)
January 2025
School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, University of Alberta, Edmonton, Canada.
Cellular protein expression is coordinated posttranscriptionally by an intricate regulatory network. The current presumption is that microRNAs (miRNAs) work by repression of functionally related targets within a system. In recent work, up-regulation of protein expression via direct interactions of messenger RNA with miRNA has been found in dividing cells, providing an additional mechanism of regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!