A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of Cre-mediated genetic deletion of in cardiomyocytes of young mice. | LitMetric

Administration of active growth differentiation factor 11 (GDF11) to aged mice can reduce cardiac hypertrophy, and low serum levels of GDF11 measured together with the related protein, myostatin (also known as GDF8), predict future morbidity and mortality in coronary heart patients. Using mice with a loxP-flanked ("floxed") allele of and -driven expression of Cre recombinase to delete in cardiomyocytes, we tested the hypothesis that cardiac-specific deficiency might lead to cardiac hypertrophy in young adulthood. We observed that targeted deletion of in cardiomyocytes does not cause cardiac hypertrophy but rather leads to left ventricular dilation when compared with control mice carrying only the or -floxed alleles, suggesting a possible etiology for dilated cardiomyopathy. However, the mechanism underlying this finding remains unclear because of multiple confounding effects associated with the selected model. First, whole heart expression did not decrease in -floxed mice, possibly because of upregulation of in noncardiomyocytes in the heart. Second, we observed Cre-associated toxicity, with lower body weights and increased global fibrosis, in Cre-only control male mice compared with flox-only controls, making it challenging to infer which changes in floxed mice were the result of Cre toxicity versus deletion of . Third, we observed differential expression of mRNA in Cre-only controls compared with the cardiomyocyte-specific knockout mice, also making comparison between these two groups difficult. Thus, targeted deletion in cardiomyocytes may lead to left ventricular dilation without hypertrophy, but alternative animal models are necessary to understand the mechanism for these findings. We observed that targeted deletion of growth differentiation factor 11 in cardiomyocytes does not cause cardiac hypertrophy but rather leads to left ventricular dilation compared with control mice carrying only the or growth differentiation factor 11-floxed alleles. However, the mechanism underlying this finding remains unclear because of multiple confounding effects associated with the selected mouse model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692736PMC
http://dx.doi.org/10.1152/ajpheart.00615.2018DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
16
deletion cardiomyocytes
12
growth differentiation
12
differentiation factor
12
targeted deletion
12
left ventricular
12
ventricular dilation
12
mice
9
observed targeted
8
cardiomyocytes cardiac
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!