Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The glass/air interface shows electrical properties that are unexpected for a widely used electrical insulator. The mobility of interfacial charge carriers under 80% relative humidity (RH) is 4.81 × 10 m s V, 3 orders of magnitude higher than the electrophoretic mobility of simple ions in water and less than 2 orders of magnitude lower than the electron mobility in copper metal. This allows the glass/air interface to reach the same potential as a biased contacting metal quickly. The interfacial surface resistance R increases by more than 5 orders of magnitude when the RH decreases from 80 to 2%, following an S-shaped curve with small hysteresis. Moreover, the biased surfaces store charge, as shown by Kelvin potential measurements. Applying an electric field parallel to the surface produces RH-dependent results: under low humidity, the interface behaves as expected for an ideal two-dimensional parallel-plate capacitor, while under high RH, it acquires and maintains excess negative charge, which is lost under low RH. The glass surface morphology and potential distribution change on the glass/air interface under high RH and applied potential, including the extensive elimination of nonglass contaminating particles and potential levelling. All these surprising results are explained by using a protonic-charge-transfer mechanism: mobile protons dissociated from silanol groups migrate rapidly along a field-oriented adsorbed water layer, while the matrix-bound silicate anions remain immobile. Glass may thus be classified as the ionic analogue of a topological insulator but based on structural features and charge-transfer mechanisms different from the chalcogenides that have been receiving great attention in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b00606 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!