Aflatoxin-specific monoclonal antibody selection for immunoaffinity column development.

Biotechniques

TÜBİTAK, The Scientific & Technological Research Council of Turkey, Marmara Research Center, Genetic Engineering & Biotechnology Institute, 41470 Gebze, Kocaeli, Turkey.

Published: June 2019

Antibodies are the basic components of immunoanalytical systems used for detection of a wide range of analytes. Although there are some ground rules for antibody selection, analyte- and assay-specific criteria are the ones that determine the ultimate success of the immunoassays. In this study, we introduced an effective antibody selection procedure for the development of immunoaffinity columns for aflatoxins. The designed scheme puts emphasis on solvent- and matrix-related characterization steps and was used to comparatively evaluate eight monoclonal antibodies. The selected antibody was tolerant to 40% methanol, 20% acetonitrile, 30% acetone and 40% ethanol and did not interact with corn, red pepper or hazelnut extracts. Immunoaffinity columns developed with the selected antibody were validated by 15 independent aflatoxin analysis laboratories.

Download full-text PDF

Source
http://dx.doi.org/10.2144/btn-2018-0143DOI Listing

Publication Analysis

Top Keywords

antibody selection
12
immunoaffinity columns
8
selected antibody
8
antibody
5
aflatoxin-specific monoclonal
4
monoclonal antibody
4
selection immunoaffinity
4
immunoaffinity column
4
column development
4
development antibodies
4

Similar Publications

Primary and secondary antibody deficiencies (PAD and SAD) are amongst the most prevalent immunodeficiency syndromes, often necessitating long-term immune globulin replacement therapy (IRT). Both intravenous immunoglobulin (IVIG) and subcutaneous immunoglobulin (SCIG) have demonstrated efficacy in antibody deficiency. Comparative analyses of these two routes of administration are limited to nurse-administered IVIG and home therapy with self-administered SCIG.

View Article and Find Full Text PDF

Therapeutic monoclonal antibodies (mAbs) against SARS-CoV-2 become obsolete as spike substitutions reduce antibody binding. To induce antibodies against conserved receptor-binding domain (RBD) regions for protection against SARS-CoV-2 variants of concern and zoonotic sarbecoviruses, we developed mosaic-8b RBD-nanoparticles presenting eight sarbecovirus RBDs arranged randomly on a 60-mer nanoparticle. Mosaic-8b immunizations protected animals from challenges from viruses whose RBDs were matched or mismatched to those on nanoparticles.

View Article and Find Full Text PDF

Background Obesity is postulated to be a high-risk factor for thrombosis along with the inherent hypercoagulability of pregnancy. The Confidential Review of Maternal Deaths (CRMD) found that thrombosis was one of the major causes of maternal deaths in Kerala. This study investigates the major risk factor - obesity and its association with thrombosis in our study setting, along with other risk factors.

View Article and Find Full Text PDF

Bispecific antibodies (BsAbs) have emerged as crucial therapeutic agents for patients with relapsed/refractory diffuse large B-cell lymphoma, multiple myeloma, and most recently, lung cancer. These therapies have demonstrated remarkable efficacy in clinical trials; however, multidisciplinary collaboration is essential to ensure optimal patient outcomes amid the operational complexities associated with BsAb therapy. As BsAbs are being prepared for broader adoption, clinicians and treatment centers must navigate operational challenges, including financial considerations, patient selection, caregiver involvement, and transitions of care.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!