Dynamic self-assembly of nanoparticles (NPs) for the formation of aggregates takes place out of thermodynamic equilibrium and is sustained by external energy supply. Herein, we present light energy driven dynamic self-assembly process of AuNPs, decorated with pH sensitive ligands. The process is being controlled by the use of photoacids and photobases that undergo excited state proton or hydroxide transfer, respectively, due to their large p K change between their ground and excited electronic states. The unique design is underlined by record subsecond conversion rates between the assembled and disassembled AuNPs states, and the ability to control the process using only light of different wavelengths. Measurements in both aqueous and nonaqueous solutions resulted in different self-assembly mechanisms, hence showing the wide versatility of photoacids and photobases for dynamic processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b00952 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!