A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis, Biological Evaluation, Structure-Activity Relationship, and Mechanism of Action Studies of Quinoline-Metronidazole Derivatives Against Experimental Visceral Leishmaniasis. | LitMetric

In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, a series of quinoline-metronidazole hybrid compounds was synthesized and tested against the murine model of visceral leishmaniasis. Among all synthesized derivatives, 15b and 15i showed significant antileishmanial efficacy against both extracellular promastigote (IC 9.54 and 5.42 μM, respectively) and intracellular amastigote (IC 9.81 and 3.75 μM, respectively) forms of Leishmania donovani with negligible cytotoxicity toward the host (J774 macrophages, Vero cells). However, compound 15i effectively inhibited the parasite burden in the liver and spleen (>80%) of infected BALB/c mice. Mechanistic studies revealed that 15i triggers oxidative stress which induces bioenergetic collapse and apoptosis of the parasite by decreasing ATP production and mitochondrial membrane potential. Structure-activity analyses and pharmacokinetic studies suggest 15i as a promising antileishmanial lead and emphasize the importance of quinoline-metronidazole series as a suitable platform for the future development of antileishmanial agents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.9b00628DOI Listing

Publication Analysis

Top Keywords

visceral leishmaniasis
8
development antileishmanial
8
antileishmanial agents
8
synthesis biological
4
biological evaluation
4
evaluation structure-activity
4
structure-activity relationship
4
relationship mechanism
4
mechanism action
4
action studies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!