The cardiac action potential requires a precise timing of activation and inactivation of ion channel subtypes. Deviations, for example, due to blockage of specific voltage-gated potassium channels, can result in live-threatening arrhythmias. Due to the limitations of standard cellular assays based on cells which artificially express only single ion channel subtypes, many potentially interesting compounds are discarded during drug development. More predictive functional assays are required. With the upcoming of human stem-cell derived cardiomyocytes (hiPS-CM) these assays are available, supporting even the design of patient-derived disease models. Microelectrode array systems allow to noninvasively record and evaluate cardiac field action potentials. In this chapter we describe how to cultivate hiPS-CM on two parallelized MEA systems and suggest an experimental strategy for compound tests.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9477-9_18DOI Listing

Publication Analysis

Top Keywords

ion channel
8
channel subtypes
8
assay procedures
4
procedures compound
4
compound testing
4
testing hipsc-derived
4
hipsc-derived cardiomyocytes
4
cardiomyocytes multiwell
4
multiwell microelectrode
4
microelectrode arrays
4

Similar Publications

A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.

View Article and Find Full Text PDF

Inflammation alters the expression and activity of the mechanosensitive ion channels in periodontal ligament cells.

Eur J Orthod

December 2024

Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.

Background: Periodontal ligament cells (PDLCs) possess mechanotransduction capability, vital in orthodontic tooth movement (OTM) and maintaining periodontal homeostasis. The study aims to elucidate the expression profiles of mechanosensitive ion channel (MIC) families in PDLCs and how the inflammatory mediator alters their expression and function, advancing the understanding of the biological process of OTM.

Methods And Methods: Human PDLCs were cultured and exposed to TNF-α.

View Article and Find Full Text PDF

Background: Transient receptor potential cation channel subfamily V member 2 (TRPV2) functions as a stretch-sensitive calcium channel, with overexpression in the sarcolemma of skeletal and cardiac myocytes leading to detrimental calcium influx and triggering muscle degeneration. In our previous pilot study, we showed that tranilast, a TRPV2 inhibitor, reduced brain natriuretic peptide levels in two patients with muscular dystrophy and advanced heart failure. Building on this, we performed a single-arm, open-label, multicenter study herein to evaluate the safety and efficacy of tranilast in the treatment of advanced heart failure in patients with muscular dystrophy.

View Article and Find Full Text PDF

Human papilloma virus-negative head and neck squamous cell carcinoma (HNSCC) frequently harbors 11q13 amplifications. Among the oncogenes at this locus, CCND1 and ANO1 are linked to poor prognosis; however, their individual roles in treatment resistance remain unclear. The impact of Cyclin D1 and Ano1 overexpression on survival was analyzed using the TCGA HNSCC dataset and a Charité cohort treated with cisplatin (CDDP)-based radiochemotherapy.

View Article and Find Full Text PDF

Some patients with neuromyelitis optica spectrum disorder (NMOSD)-like symptoms test negative for anti-aquaporin-4 (anti-AQP4) antibodies. Among them, a subset has antibodies targeting myelin oligodendrocyte glycoprotein (MOG), a condition now termed MOG antibody-associated disease (MOGAD). MOGAD shares features with NMOSD, like optic neuritis and myelitis, but differs in pathophysiology, clinical presentation, imaging findings, and biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!