Ligand-Directed N-Sulfonyl Pyridone Chemistry for Selective Native Protein Labeling and Imaging in Live Cell.

Methods Mol Biol

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.

Published: March 2020

Advances in biocompatible organic chemistry applicable for endogenous protein modification under live-cell conditions have been longed as these can produce an important tool for the elucidation of a variety of biological phenomena. However, there are still various obstacles to be overcome, such as the limited repertories of the reaction modes, the slow reaction kinetics, and the insufficient specificity for endogenous protein modification. We have recently reported a new type of affinity-based labeling technique termed ligand-directed (LD) chemistry that does not need any genetic manipulation, which shows a sharp contrast with other strategies including peptide/enzyme-tag methods or bioorthogonal chemistry-based methods. Here we describe the general principles of LD chemistry using N-sulfonyl pyridone (SP) as a new reactive group (LDSP chemistry) that allows for endogenous protein sulfonylation with the higher labeling rate and specificity, relative to our previously reported LD chemistry on the surface of and the inside of live cells. The detailed protocols of LDSP chemistry for carbonic anhydrase labeling and imaging in vitro and in living cells are explained.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9537-0_16DOI Listing

Publication Analysis

Top Keywords

endogenous protein
12
n-sulfonyl pyridone
8
labeling imaging
8
protein modification
8
ldsp chemistry
8
chemistry
7
ligand-directed n-sulfonyl
4
pyridone chemistry
4
chemistry selective
4
selective native
4

Similar Publications

Aims: The screening and diagnosis of dengue virus infection play a crucial role in controlling the epidemic of dengue fever, highlighting the urgent need for a highly sensitive, simple, and rapid laboratory testing method. This study aims to assess the clinical performance of MAGLUMI Denv NS1 in detecting dengue virus NS1 antigen.

Methods: A retrospective study was conducted to assess the sensitivity and specificity of MAGLUMI Denv NS1 using residual samples.

View Article and Find Full Text PDF

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

Cell wall extensibility is a key biophysical characteristic that defines the rate of plant cell growth. It depends on the wall structure and is controlled by numerous proteins that cut and/or (re)form links between the wall constituents. Cell wall extensibility is currently estimated by different in vitro biomechanical tests.

View Article and Find Full Text PDF

Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.

Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.

View Article and Find Full Text PDF

Gentamicin (GM) administration is associated with decreased metabolism, increased oxidative stress, and induction of nephrotoxicity. L., containing flavonoids, anthocyanins, and phytosterols, possesses antioxidant and anti-inflammatory potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!