Biotin identification (BioID) proteomics facilitates the unbiased detection of protein interaction neighborhoods in live cells. The BioID technique relies on the covalent biotin alteration of vicinal proteins by a modified bacterial biotin ligase. The biotin ligase is fused to a protein of interest to identify putative protein-protein interactions. Here, we describe the adaptation of this technique for use in three-dimensional epidermal cultures. Due to the covalent biotin modification of proteins, our protocol allows for the complete solubilization of the total cellular protein content in differentiated keratinocytes. Thus, a comprehensive network of potential interactors of a protein of interest can be mapped.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6874900PMC
http://dx.doi.org/10.1007/7651_2019_239DOI Listing

Publication Analysis

Top Keywords

biotin identification
8
covalent biotin
8
biotin ligase
8
protein interest
8
biotin
6
identification proteomics
4
proteomics three-dimensional
4
three-dimensional organotypic
4
organotypic human
4
human skin
4

Similar Publications

Background/objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44.

View Article and Find Full Text PDF

Corosolic acid (CA), a natural triterpenoid, exhibits various biological activities and is often called as plant-derived insulin due to its significant hypoglycemic effects, making it especially beneficial for individuals with diabetes or high blood glucose levels. However, CA has notable in vitro toxicity, low water solubility, and poor pharmacokinetic properties. To address these limitations, a series of CA derivatives were synthesized, resulting in the identification of derivative H26, which demonstrates a significantly enhanced hypoglycemic effect, reduced toxicity, and improved pharmacokinetic characteristics compared to CA.

View Article and Find Full Text PDF

Identification of VDAC1 as a cardioprotective target of Ginkgolide B.

Chem Biol Interact

December 2024

School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, China. Electronic address:

Ginkgolide B (GB), a compound derived from Ginkgo biloba, exhibits significant cardioprotective properties, although its precise molecular target has yet to be identified. In this study, we synthesized a biotin-labeled GB probe (GB-biotin) to identify the molecular targets of GB. Our experiments demonstrated that treatment with GB or GB-biotin reduced mitochondrial injury, restored mitochondrial membrane potential, and decreased cell apoptosis in a concentration-dependent manner.

View Article and Find Full Text PDF

Promyelocytic leukemia (PML) protein forms the scaffold for PML nuclear bodies (PML NB) that reorganize into Lipid-Associated PML Structures (LAPS) under fatty acid stress. We determined how the fatty acid oleate alters the interactome of PMLI or PMLII by expressing fusions with the ascorbate peroxidase APEX2 in U2OS cells. The resultant interactome included ESCRT and COPII transport protein nodes.

View Article and Find Full Text PDF

Synthesis and Preliminary Evaluation of Tanshinone Mimic Conjugates for Mechanism of Action Studies.

Chembiochem

December 2024

Istituto di Scienze e Tecnologie Chimiche (SCITEC) 'Giulio Natta', Consiglio Nazionale delle Ricerche (CNR), Via C. Golgi 19, 20133, Milan, Italy.

Human antigen R (HuR) is an RNA binding protein (RBP) belonging to the ELAV (Embryonic Lethal Abnormal Vision) family, which stabilizes mRNAs and regulates the expression of multiple genes. Its altered expression or localization is related to pathological features such as cancer or inflammation. Dihydrotanshinone I (DHTS I) is a naturally occurring, tetracyclic ortho-quinone inhibitor of the HuR-mRNA interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!