Undesired-burst release effect is observed in a freely water-soluble drug formulated into a gastro-floating formulation with effervescent (GFFE) delivery system. In order to address this limitation, interpolymer complex (IPC) of two swellable and non-soluble polymers, poly-ammonium methacrylate and poly-vinyl acetate, was incorporated into hydroxypropyl methyl cellulose (HPMC)-based matrix GFFE. This research studied the effect and interaction of the IPC-HPMC blending on the drug release of GFFE using a freely water-soluble drug, metformin HCl, under different threshold concentration levels and curing effect. The interaction between the IPC and HPMC was characterized using vibrational spectroscopy and thermal analyses under curing and swelling conditions. Anti-solvent followed by lyophilization had better physicochemical and physicomechanic properties than spray dying technique. The interaction was observed by a specific shifting of the vibrational peaks and alteration of the thermal behavior pattern. These effects altered the drug release behavior. Thereafter, the IPC reduced burst release effects in the initial time and during testing, and the IPC improved the HPMC matrix robustness under mechanical stress testing below threshold concentration of HPMC matrix formulated in the GFFE.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-019-1414-zDOI Listing

Publication Analysis

Top Keywords

freely water-soluble
12
water-soluble drug
12
threshold concentration
12
burst release
8
gastro-floating formulation
8
interpolymer complex
8
drug release
8
hpmc matrix
8
release
5
drug
5

Similar Publications

Liquefied capsules containing nanogrooved microdiscs and umbilical cord-derived cells for bone tissue engineering.

Open Res Eur

September 2024

CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal.

Background: Surface topography has been shown to influence cell behavior and direct stromal cell differentiation into distinct lineages. Whereas this phenomenon has been verified in two-dimensional cultures, there is an urgent need for a thorough investigation of topography's role within a three-dimensional (3D) environment, as it better replicates the natural cellular environment.

Methods: A co-culture of Wharton's jelly-derived mesenchymal stem/stromal cells (WJ-MSCs) and human umbilical vein endothelial cells (HUVECs) was encapsulated in a 3D system consisting of a permselective liquefied environment containing freely dispersed spherical microparticles (spheres) or nanogrooved microdiscs (microdiscs).

View Article and Find Full Text PDF

In this study, porous networks were efficiently prepared by crosslinking hydrophilic poly(2-isopropenyl-2-oxazoline) (PiPOx) with dicarboxylic polyesters (HOOC-PLA-COOH or HOOC-PCL-COOH) in the presence of sodium chloride as a water-soluble porogen. Importantly, by using a relatively simple synthetic protocol, the resulting spongy materials were freely formed to the desired size and shape while maintaining stable dimensions. According to the SEM data, the porous 3D structure can be altered by the pore dimensions, which are dependent on the porogen crystal size.

View Article and Find Full Text PDF

Imaging in the shortwave infrared (SWIR, 1000-1700 nm) region is gaining traction for biomedical applications, leading to an in-depth search for fluorophores emitting at these wavelengths. The development of SWIR emitters, to be used in vivo in biological media, is mostly hampered by the considerable lipophilicity of the structures, resulting from the highly conjugated scaffold required to shift the emission to this region, that limit their aqueous solubility. In this work, we have modulated a known SWIR emitter, named Flav7, by adding hydrophilic moieties to the flavylium scaffold and we developed a new series of Flav7-derivatives, which proved to be indeed more polar than the parent compound, but still not freely water-soluble.

View Article and Find Full Text PDF

NanoLuc luciferase and its derivatives are attractive bioluminescent reporters recognized for their efficient photon production and ATP independence. However, utilizing them for imaging poses notable challenges. Low substrate solubility has been a prominent problem, limiting brightness, while substrate instability hampers consistent results and handling.

View Article and Find Full Text PDF

Polar accumulation of pyoverdin and exit from stationary phase.

Microlife

February 2024

Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France.

Pyoverdin is a water-soluble metal-chelator synthesized by members of the genus and used for the acquisition of insoluble ferric iron. Although freely diffusible in aqueous environments, preferential dissemination of pyoverdin among adjacent cells, fine-tuning of intracellular siderophore concentrations, and fitness advantages to pyoverdin-producing versus nonproducing cells, indicate control of location and release. Here, using time-lapse fluorescence microscopy to track single cells in growing microcolonies of SBW25, we show accumulation of pyoverdin at cell poles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!