The human intestinal microbiota has an important role in the maintenance of human health and disease pathogenesis. The aim of this research was to investigate the impact of four media on human intestinal microbiota metabolite and composition changes, we performed in vitro batch culture using intestinal microbiota samples from three fecal microbiota transplantation (FMT) donors. After 48 h culture, gut microbiota medium (GMM) had the highest production of acetic acid (73.00 ± 7.56 mM) and propionic acid (16.79 ± 1.59 mM), bacterial growth media (BGM) had the highest production of butyric acid (13.39 ± 0.56 mM). In addition, brain heart infusion (BHI) promoted (p < 0.05) the growth of Bacteroidetes, especially Bacteroides after 48 h, GMM resulted in a significant increase (p < 0.05) in Actinobacteria and increased the beneficial genus Bifidobacterium, fastidious anaerobe broth (FAB) increased Firmicutes population, and BGM promoted the growth of Escherichia-Shigella and Akkermansia. The results suggest that four media had different effects on the human intestinal microbiota metabolism and composition in vitro. These results may facilitate the culture of bacteria from the human intestinal microbiota.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533344 | PMC |
http://dx.doi.org/10.1186/s13568-019-0790-9 | DOI Listing |
Pol J Vet Sci
December 2024
School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan.
Diet has emerged as a key modulator of the gut microbiota, offering a potential strategy for disease prevention and management. This study investigated the effects of the Prescription Diet Gastrointestinal Biome (GB) on 7 healthy dogs and 16 dogs with chronic gastrointestinal diseases (GI dogs). Our investigation monitored changes in body weight and the Canine Inflammatory Bowel Disease Activity Index (CIBDAI) in 16 GI dogs fed a GB diet.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Nephrology, Urology & Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
Diabetic nephropathy is an important complication of diabetic microvascular injury, and it is also an important cause of end-stage renal disease. Its high prevalence and disability rate significantly impacts patients' quality of life while imposing substantial social and economic burdens. Gut microbiota affects host metabolism, multiple organ functions, and regulates host health throughout the life cycle.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari, Bari, Italy.
Front Endocrinol (Lausanne)
December 2024
Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China.
In contemporary microbial research, the exploration of interactions between microorganisms and multicellular hosts constitutes a burgeoning field. The gut microbiota is increasingly acknowledged as a pivotal contributor to various disorders within the endocrine system, encompassing conditions such as diabetes and thyroid diseases. A surge in research activities has been witnessed in recent years, elucidating the intricate interplay between the gut microbiota and disorders of the endocrine system.
View Article and Find Full Text PDF3 Biotech
January 2025
Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka Manipal, 576 104 India.
The microbiota-gut-brain axis is a pivotal medium of crosstalk between the central nervous system (CNS) and the gastrointestinal tract. It is an intricate network of synergistic molecular pathways that exert their effects far beyond their local vicinity and even affect the systemic functioning of the body. The current review explores the involvement of the gut-brain axis (GBA) in the functioning of the nervous system, with a special emphasis on the neurodegeneration, cognitive decline, and neuroinflammation that occur in Alzheimer's disease (AD) and Parkinson's disease (PD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!