A series of 8 luminescent borafluorene complexes were extensively studied both experimentally and theoretically in order to elucidate the effect of organoboron moiety rigidification on the physicochemical properties of these compounds. Due to the spiro geometry of the boron atom, borafluorene and ligand units are perpendicularly aligned, which considerably affects the flexibility of the molecule as well as its solid-state structure. Through comparative analysis with close diphenyl analogues, we show how these structural features influence the thermal, photoluminescent and charge mobility behaviour of the studied compounds. Crystal structural analysis revealed that the molecules are connected mostly through C-HO and C-Hπ interactions formed between perpendicularly aligned borafluorene and ligand moieties from neighboured molecules, serving as a complementary donor and acceptor of electron density, respectively. This also efficiently prevents molecules from engaging in unfavoured π-stacking contact. Furthermore, structural analysis suggests that borafluorene complexes possess a considerable degree of flexibility due to OBN heterocycle distortions and mutual borafluorene-ligand plane movements. The magnitude of these effects strictly depends on the ligand structure and may lead either to enhancing or lowering the quantum yield value with respect to BPh analogues, while the absorption and emission wavelength are slightly affected. The measured photophysical parameters for solid-state samples showed that the studied complexes are much better emitters in their crystalline states that in amorphous films. The TD-DFT and NTO calculations revealed a significant change in frontier molecular distribution, with the HOMO localized on the borafluorene moiety. However, as the HOMO-LUMO transition is geometrically not favoured, excitation occurred from HOMO-1 localized on the ligand. Finally, aggregation effects were discussed based on supramolecular arrangements in crystal structures and charge transfer rates obtained from theoretical calculations in the framework of the Marcus-Hush approximation. They suggest that borafluorene complexes are much better electron carriers with respect to non-annulated BPh complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt01332fDOI Listing

Publication Analysis

Top Keywords

borafluorene complexes
12
borafluorene ligand
8
perpendicularly aligned
8
structural analysis
8
complexes better
8
complexes
6
borafluorene
6
locking π-conjugation
4
π-conjugation organoboron
4
organoboron moieties
4

Similar Publications

The Lewis acidity of tris(-carboranyl)borane has been slightly increased by mimicking the structural evolution from triarylborane to 9-aryl-9-borafluorene. The -carborane-based analogue (CBH)B(CBH), obtained salt elimination between LiCBH and (CBH)BBr, has been fully characterized. Gutmann-Beckett and computational fluoride/hydride ion affinity (FIA/HIA) studies have confirmed the increase in Lewis acidity, which is attributable to structural constraint imposed by the CC-coupling between two carboranyl groups.

View Article and Find Full Text PDF

We report the synthesis and characterization of a series of BNP-incorporated borafluorenate heterocycles formed via thermolysis reactions of pyridylphosphine and bis(phosphine)-coordinated borafluorene azides. The use of diphenyl-2-pyridylphosphine (PyPhP), trans-1,2-bis(diphenylphosphino)ethylene (PhP(H)C═C(H)PPh), and bis(diphenylphosphino)methane (PhPC(H)PPh) as stabilizing ligands resulted in Staudinger reactions to form complex heterocycles with four- (BNP, BNPC, PN) and five-membered (BNPC and BNPC) rings, which were successfully isolated and fully characterized by multinuclear NMR and X-ray crystallography. However, when bis(diphenylphosphino)benzene (PhP-Ph-PPh) was used as the ligand in a reaction with 9-bromo-9-borafluorene (BF-Br), due to the close proximity of the donor P atoms, the diphosphine-stabilized borafluoronium ion with an unusual borafluorene dibromide anion was formed.

View Article and Find Full Text PDF

The synthesis and characterization of two fluorinated 3,6-diaza-9-hydroxy-9-borafluorene oxonium acids featuring improved hydrolytic stability and the strong electron-deficient character of the diazaborafluorene core is reported. These boracycles served as precursors of fluorescent spiro-type complexes with (O,N)-chelating ligands which revealed specific properties such as delayed emission, white light emission in the solid state and photocatalytic performance in singlet oxygen-mediated oxidation reactions.

View Article and Find Full Text PDF

Probing borafluorene B-C bond insertion with gold acetylide and azide.

Dalton Trans

January 2023

Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA.

The reaction of PhPAuN with 9-Ph-9-borafluorene resulted in complexation of the azide to boron while a gold acetylide reacted with 9-Ph-9-borafluorene to insert the acetylide carbon to access a six-membered boracycle with an exocyclic double bond.

View Article and Find Full Text PDF

The impact of the exact spatial arrangement of the alkali metal on the electronic properties of 9-carbene-9-borafluorene monoanions is assessed, and a series of [K][9-CAAC-9-borafluorene] complexes (-) have been isolated (CAAC = cyclic(alkyl)(amino) carbene, (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene). Compound , which contains [B]-K(THF) interactions, is compared to charge-separated -, which were prepared by capturing the potassium cations with 18-crown-6, 2.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!