Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pseudomonas syringae produces highly efficient biological ice nuclei (IN) that were proposed to influence precipitation by freezing water in clouds. This bacterium may be capable of dispersing through the atmosphere, having been reported in rain, snow, and cloud water samples. This study assesses its survival and maintenance of IN activity under stressing conditions present at high altitudes, such as UV radiation within clouds. Strains of the pathovars syringae and garcae were compared to Escherichia coli. While UV-C effectively inactivated these cells, the Pseudomonas were much more tolerant to UV-B. The P. syringae strains were also more resistant to radiation from a solar simulator, composed of UV-A and UV-B, while only one of them suffered a decline in IN activity at -5 °C after long exposures. Desiccation at different relative humidity values also affected the IN, but some activity at -5 °C was always maintained. The pathovar garcae tended to be more resistant than the pathovar syringae, particularly to desiccation, though its IN were found to be generally more sensitive. Compared to E. coli, the P. syringae strains appear to be better adapted to survival under conditions present at high altitudes and in clouds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533367 | PMC |
http://dx.doi.org/10.1038/s41598-019-44283-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!