A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of the structural components of artificial turf systems on impact attenuation in amateur football players. | LitMetric

The purpose of this research was to evaluate the influence of the structural components of different 3rd generation artificial turf football field systems on the biomechanical response of impact attenuation in amateur football players. A total of 12 amateur football players (24.3 ± 3.7 years, 73.5 ± 5.5 kg, 178.3 ± 4.1 cm and 13.7 ± 4.3 years of sport experience) were evaluated on three third generation artificial turf systems (ATS) with different structural components. ATS were composed of asphalt sub-base and 45 mm of fibre height with (ATS1) and without (ATS2) elastic layer or compacted granular sub-base, 60 mm of fibre height without elastic layer (ATS3). Two triaxial accelerometers were firmly taped to the forehead and the distal end of the right tibia of each individual. The results reveal a higher force reduction on ATS3 in comparison to ATS1 (+6.24%, CI95%: 1.67 to 10.92, ES: 1.07; p < 0.05) and ATS2 (+21.08%, CI95%: 16.51 to 25.66, ES: 2.98; p < 0.05) elastic layer. Tibia acceleration rate was lower on ATS3 than ATS1 (-0.32, CI95%: -0.60 to -0.03, ES: 4.23; p < 0.05) and ATS2 (-0.35, CI95%: -0.64 to -0.06; ES: 4.69; p < 0.05) at 3.3 m/s. A very large correlation (r = 0.7 to 0.9; p < 0.05) was found between energy restitution and fibre height in both head and tibial peak acceleration and stride time. In conclusion, structural components (fibre height, infill, sub-base and elastic layer) determine the mechanical properties of artificial turf fields. A higher force reduction and lower energy restitution diminished the impact received by the player which could protect against injuries associated with impacts compared to harder artificial turf surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533268PMC
http://dx.doi.org/10.1038/s41598-019-44270-8DOI Listing

Publication Analysis

Top Keywords

structural components
12
artificial turf
12
amateur football
12
football players
12
influence structural
8
turf systems
8
impact attenuation
8
attenuation amateur
8
generation artificial
8
fibre height
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!