Honey bees learn to associate sugars with odorants in controlled laboratory conditions and during foraging. The memory of these associations can be impaired after exposure to contaminants such as pesticides. The sub-lethal effects of acaricides such as 5-methyl-2-(propan-2-yl)-phenol (thymol) introduced into colonies to control varroa mites are of particular concern to beekeeping, due to detrimental effects of some acaricides on bees. Here we assess whether various odorant/sugar pairs are identically memorized in a differential appetitive olfactory conditioning experiment and whether this learning is affected by thymol exposure. Responses to odorants in retrieval tests varied according to the sugar they were paired with, a property called congruency. Interestingly, congruency was altered by pre-exposure to some thymol concentrations during retrieval tests, although electroantennography recordings showed it left odorant detection intact. This highlights the importance of taking into account subtle effects such as odor/sugar congruency in the study of the effect of pesticides on non-target insects, in addition to the simpler question of memory impairment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533272 | PMC |
http://dx.doi.org/10.1038/s41598-019-43614-8 | DOI Listing |
J Agric Food Chem
January 2025
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
Recently, the structural optimization of natural bioactive products has been one of the important ways to discover new pesticide candidates. Based on osthole as a lead compound, herein, a series of new 2-isopropanol-4-methoxy-7-alkyl/aryloxycarbonyl-()-vinyl-2,3-dihydrobenzofuran derivatives were synthesized. Steric configurations of compounds , , , , , , and were confirmed by X-ray monocrystallography.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
Avermectins (AVMs) and their derivatives are the most effective and widely used nematicides, insecticides, and acaricides against endo- and ectoparasites of plants, animals, and humans. Demand for avermectins and their highly effective derivatives has increased due to their high cost-effectiveness and wide range of applications as medicines and crop protection products. Due to the unique structures of these compounds and for industrial production purposes, numerous efforts and strategies have been dedicated to enhancing the production of avermectins and creating new analogues in recent years.
View Article and Find Full Text PDFPathogens
November 2024
Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias INIFAP, Boulevard Cuauhnahuac 8534, Jiutepec 62574, Morelos, Mexico.
is a blood-sucking parasite that causes heavy infestations on cattle and is a vector for severe tick-borne diseases, such as anaplasmosis and babesiosis, and poses a significant threat to the cattle industry. Cattle ticks show increasing acaricide resistance, which creates an additional problem concerning the inefficient chemical control of tick populations in cattle-grazing areas, necessitating the exploration of alternative tick biocontrol methods. Our study aimed to demonstrate the acaropathogenic efficacy of two bacterial species during experimental infections on .
View Article and Find Full Text PDFMolecules
December 2024
Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Emamectin benzoate (EB) is a highly effective broad-spectrum insecticide and acaricide. However, because EB is easily degraded, the conventional formulations of EB are often overapplied. In this study, polylactic acid (PLA)-based microspheres were prepared using the modified solvent evaporation method for the controlled release of EB.
View Article and Find Full Text PDFInsects
December 2024
UK Management College, College House Campus, Stanley St., Openshaw, Manchester M11 1LE, UK.
Entomopathogenic fungi (EPFs) can infect and kill a diverse range of arthropods, including ticks (Acari: Ixodidae) that can transmit various diseases to animals and humans. Consequently, the use of EPFs as a biocontrol method for managing tick populations has been explored as an alternative to chemical acaricides, which may have harmful effects on the environment and non-target species. This review summarizes studies conducted on EPFs for tick control between 1998 and 2024, identifying 9 different EPF species that have been used against 15 different species of ticks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!