In the field of vision-based attitude estimation, camera model and attitude solving algorithm are the key technologies, which determine the measurement accuracy, effectiveness and applicability. Aiming at this issue, in this paper we probe into the generic imaging model and then develop a corresponding generic camera calibration method using two auxiliary calibration planes. The camera model is named as imaging ray tracking model. Based on the imaging ray tracking camera model and with the knowledge of the calibration parameters, an advanced attitude solving algorithm, imaging ray tracking model and attitude from orthographic projection with iterations algorithm, is deeply investigated, which is inspired by the classical POSIT algorithm. The initial attitude value is provided by the orthographic projection of the object on the two calibration planes and then refined by iteration to approximate the true object attitude. Experimental platform is setup to conduct the imaging ray tracking camera calibration procedure and further evaluate our attitude estimation algorithm. We show the effectiveness and superiority of our proposed attitude estimation algorithm by thorough testing on real-data and by comparison with the POSIT algorithm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2019.05.009 | DOI Listing |
Background And Aims: People who have diabetes mellitus (DM) are thought to be more susceptible to pulmonary tuberculosis (PTB). Several published comparative investigations have reported that chest x-ray images from PTB with DM are considered atypical due to their frequent involvement of the lower lung field (LLF). This study aimed to investigate the frequency of lower lung field tuberculosis (LLF-TB) in DM and the risk factor of DM for the development of TB.
View Article and Find Full Text PDFBiophys Rev (Melville)
March 2025
School of Physics, Australian Centre for Microscopy and Microanalysis, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
The accurate detection of x-rays enables broad applications in various fields, including medical radiography, safety and security screening, and nondestructive inspection. Medical imaging procedures require the x-ray detection devices operating with low doses and high efficiency to reduce radiation health risks, as well as expect the flexible or wearable ones that offer more comfortable and accurate diagnosis experiences. Recently, halide perovskites have shown promising potential in high-performance, cost-effective x-ray detection owing to their attractive features, such as strong x-ray absorption, high-mobility-lifetime product, tunable bandgap, fast response, as well as low-cost raw materials, facile processing, and excellent flexibility.
View Article and Find Full Text PDFIn image-guided radiotherapy (IGRT), four-dimensional cone-beam computed tomography (4D-CBCT) is critical for assessing tumor motion during a patients breathing cycle prior to beam delivery. However, generating 4D-CBCT images with sufficient quality requires significantly more projection images than a standard 3D-CBCT scan, leading to extended scanning times and increased imaging dose to the patient. To address these limitations, there is a strong demand for methods capable of reconstructing high-quality 4D-CBCT images from a 1-minute 3D-CBCT acquisition.
View Article and Find Full Text PDFCureus
December 2024
Department of Oral Medicine, Nihon University School of Dentistry, Tokyo, JPN.
Combined risk factors such as total gastrectomy, heavy alcohol consumption, smoking, and poor oral hygiene may contribute to the development of pulmonary actinomycosis. Here, we present a rare case of pulmonary actinomycosis triggered by total gastrectomy and heavy alcohol consumption. The patient presented with hemoptysis and a suspected lung mass.
View Article and Find Full Text PDFMater Today Bio
February 2025
China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.
Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!