More and more severe energy problem triggers extensive application of nuclear energy, and the adverse effects brought by nuclear materials such as uranyl to the environment are becoming the concern, as it has become a threat to human's health. Therefore, the detection of uranyl is increasingly important, which aims to make the application of uranium under surveillance and protection. A lot of detection methods employing varying materials based on different techniques for uranyl have been proposed including those using expensive and complicated instruments such as ICP-MS, ESI-MS, and neutron activation analysis etc. Those methods based on expensive instruments often provide quite low limit of detection (LOD) and excellent validity and repeatability, however, methods that are low-cost, convenient and rapid are in demand because these are satisfied characters for on-site and in-time determination. In the review, we discuss uranyl sensors based on spectrographic techniques, which is facile and promising for rapid assessment of uranium content in practical application. Spectrographic techniques including fluorescence, UV-vis spectrophotometry, resonance light scattering (RLS) and surface enhanced Raman scattering (SERS) are evaluated. In detail, the core materials that playing extremely important roles in detection performance are stated consisting of small molecule, biomolecule, polymer and nanomaterial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2019.04.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!