Background: Riemerella anatipestifer (R. anatipestifer) is one of the most important poultry pathogens worldwide, with associated infections causing significant economic losses. Rifampin Resistance is an important mechanism of drug resistance. However, there is no information about rpoB mutations conferring rifampin resistance and its fitness cost in Riemerella anatipestifer.
Results: Comparative analysis of 18 R.anatipestifer rpoB sequences and the determination of rifampin minimum inhibitory concentrations showed that five point mutations, V382I, H491N, G502K, R494K and S539Y, were related to rifampin resistance. Five overexpression strains were constructed using site-directed mutagenesis to validate these sites. To investigate the origin and fitness costs of the rpoB mutations, 15 types of rpoB mutations were isolated from R. anatipestifer ATCC 11845 by using spontaneous mutation in which R494K was identical to the type of mutation detected in the isolates. The mutation frequency of the rpoB gene was calculated to be 10. A total of 98.8% (247/250) of the obtained mutants were located in cluster I of the rifampin resistance-determining region of the rpoB gene. With the exception of D481Y, I537N and S539F, the rifampin minimum inhibitory concentrations of the remaining mutants were at least 64 μg/mL. The growth performance and competitive experiments of the mutant strains in vitro showed that H491D and 485::TAA exhibit growth delay and severely impaired fitness. Finally, the colonization abilities and sensitivities of the R494K and H491D mutants were investigated. The sensitivity of the two mutants to hydrogen peroxide (HO and sodium nitroprusside (SNP) increased compared to the parental strain. The number of live colonies colonized by the two mutants in the duckling brain and trachea were lower than that of the parental strain within 24 h.
Conclusions: Mutations of rpoB gene in R. anatipestifer mediate rifampin resistance and result in fitness costs. And different single mutations confer different levels of fitness costs. Our study provides, to our knowledge, the first estimates of the fitness cost associated with the R. anatipestifer rifampin resistance in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533769 | PMC |
http://dx.doi.org/10.1186/s12866-019-1478-7 | DOI Listing |
N Engl J Med
January 2025
From Médecins Sans Frontières (L.G., F.V.), Sorbonne Université, INSERM Unité 1135, Centre d'Immunologie et des Maladies Infectieuses (L.G.), Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (L.G.), and Epicentre (M.G., E. Baudin), Paris, and Translational Research on HIV and Endemic and Emerging Infectious Diseases, Montpellier Université de Montpellier, Montpellier, Institut de Recherche pour le Développement, Montpellier, INSERM, Montpellier (M.B.) - all in France; Interactive Development and Research, Singapore (U.K.); McGill University, Epidemiology, Biostatistics, and Occupational Health, Montreal (U.K.); UCSF Center for Tuberculosis (G.E.V., P.N., P.P.J.P.) and the Division of HIV, Infectious Diseases, and Global Medicine (G.E.V.), University of California at San Francisco, San Francisco; the National Scientific Center of Phthisiopulmonology (A.A., E. Berikova) and the Center of Phthisiopulmonology of Almaty Health Department (A.K.), Almaty, and the City Center of Phthisiopulmonology, Astana (Z.D.) - all in Kazakhstan; Médecins Sans Frontières (C.B., I.M.), the Medical Research Council Clinical Trials Unit at University College London (I.M.), and St. George's University of London Institute for Infection and Immunity (S.W.) - all in London; MedStar Health Research Institute, Washington, DC (M.C.); Médecins Sans Frontières, Mumbai (V. Chavan), the Indian Council of Medical Research Headquarters-New Delhi, New Delhi (S. Panda), and the Indian Council of Medical Research-National AIDS Research Institute, Pune (S. Patil) - all in India; the Centre for Infectious Disease Epidemiology and Research (V. Cox) and the Department of Medicine (H. McIlleron), University of Cape Town, and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (S.W.) - both in Cape Town, South Africa; the Institute of Tropical Medicine, Antwerp, Belgium (B. C. J.); Médecins Sans Frontières, Geneva (G.F., N.L.); Médecins Sans Frontières, Yerevan, Armenia (O.K.); the National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia (N.K.); Partners In Health (M.K.) and Jhpiego Lesotho (L.O.) - both in Maseru; Socios En Salud Sucursal Peru (L.L., S.M.-T., J.R., E.S.-G., D.E.V.-V.), Hospital Nacional Sergio E. Bernales, Centro de Investigacion en Enfermedades Neumologicas (E.S.-G.), Hospital Nacional Dos de Mayo (E.T.), Universidad Nacional Mayor de San Marcos (E.T.), and Hospital Nacional Hipólito Unanue (D.E.V.-V.) - all in Lima; Global Health and Social Medicine, Harvard Medical School (L.L., K.J.S., M.L.R., C.D.M.), Partners In Health (L.L., K.J.S., M.L.R., C.D.M.), the Division of Global Health Equity, Brigham and Women's Hospital (K.J.S., M.L.R., C.D.M.), the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, (L.T.), and Harvard T.H. Chan School of Public Health (L.T.) - all in Boston; and the Indus Hospital and Health Network, Karachi, Pakistan (H. Mushtaque, N.S.).
Background: For decades, poor treatment options and low-quality evidence plagued care for patients with rifampin-resistant tuberculosis. The advent of new drugs to treat tuberculosis and enhanced funding now permit randomized, controlled trials of shortened-duration, all-oral treatments for rifampin-resistant tuberculosis.
Methods: We conducted a phase 3, multinational, open-label, randomized, controlled noninferiority trial to compare standard therapy for treatment of fluoroquinolone-susceptible, rifampin-resistant tuberculosis with five 9-month oral regimens that included various combinations of bedaquiline (B), delamanid (D), linezolid (L), levofloxacin (Lfx) or moxifloxacin (M), clofazimine (C), and pyrazinamide (Z).
Antibiotics (Basel)
December 2024
Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.
: Tuberculosis (TB) is preventable and curable, but multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) pose significant challenges worldwide due to the limited treatment options, lengths of therapies, and high rates of treatment failure. The management of MDR-TB has been revolutionized by all oral anti-TB drug regimens that are likely to improve adherence and treatment outcomes. These regimes include bedaquiline (B), pretomanid (P), and linezolid (L) (BPaL), and moxifloxacin if resistance to fluoroquinolones is not detected (BPaLM).
View Article and Find Full Text PDFLancet Child Adolesc Health
February 2025
Stellenbosch University, Faculty of Medicine and Health Sciences, Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Tygerberg, South Africa.
Background: There are few data on the treatment of children and adolescents with multidrug-resistant (MDR) or rifampicin-resistant (RR) tuberculosis, especially with more recently available drugs and regimens. We aimed to describe the clinical and treatment characteristics and their associations with treatment outcomes in this susceptible population.
Methods: We conducted a systematic review and individual participant data meta-analysis.
BMJ Glob Health
January 2025
Unit of HIV and Tuberculosis, Institute of Tropical Medicine Department of Clinical Sciences, Antwerpen, Belgium.
Introduction: The WHO endorsed the Xpert MTB/RIF (Xpert) technique since 2011 as initial test to diagnose rifampicin-resistant tuberculosis (RR-TB). No systematic review has quantified the proportion of pretreatment attrition in RR-TB patients diagnosed with Xpert in high TB burden countries.Pretreatment attrition for RR-TB represents the gap between patients diagnosed and those who effectively started anti-TB treatment regardless of the reasons (which include pretreatment mortality (death of a diagnosed RR-TB patient before starting adequate treatment) and/or pretreatment loss to follow-up (PTLFU) (drop-out of a diagnosed RR-TB patient before initiation of anti-TB treatment).
View Article and Find Full Text PDFSci Rep
January 2025
Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico.
It was a general belief that drug resistance in Mycobacterium tuberculosis (Mtb) was associated with lesser virulence, particularly rifampicin resistance, which is usually produced by mutations in the RNA polymerase Beta subunit (RpoB). Interestingly, this kind of bacterial mutations affect gene transcription with significant effects on bacterial physiology and metabolism, affecting also the bacterial antigenic constitution that in consequence can produce diverse immune responses and disease outcome. In the present study, we show the results of the Mtb clinical isolate A96, which is resistant to rifampicin and when used to infect BALB/c mice showed hypervirulence, apparently by rapidly polarization of the Th2 immune response through early and high production of IL-4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!