Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum).

BMC Plant Biol

College of Horticulture, Nanjing Agricultural University, Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China.

Published: May 2019

Background: MicroRNA319 (miR319) acts as an essential regulator of gene expression during plant development and under stress conditions. Although the role of miR319a in regulating leaf development has been well studied in tomato (Solanum lycopersicum), the function of the recently discovered wild tomato Solanum habrochaites miRNA319d (sha-miR319d) remains poorly understood. In this study, we overexpressed sha-miR319d in cultivated tomato 'Micro-Tom' to further investigate its role in tomato temperature stress responses.

Results: Under chilling or heat stress, sha-miR319d-overexpressing plants showed enhanced stress tolerance, including lower relative electrolyte leakage (REL), malondialdehyde (MDA) concentration, O generation and HO concentration and higher chlorophyll contents and Fv/Fm values than wild-type (WT) plants. Overexpression of sha-miR319d enhanced the activities of superoxide dismutase (SOD) and catalase (CAT), with possible correlation with elevated expression levels of the genes FeSOD, CuZnSOD and CAT. Moreover, different expression levels of key genes involved in chilling (MYB83 and CBF1), heat (HsfA1a, HsfA1b and Hsp90), and reactive oxygen species (ROS) (ZAT12 and ZAT10) signaling in transgenic plants and WT were determined, suggesting a role for sha-miR319d in regulating tomato temperature stress via chilling, heat and ROS signaling. Silencing GAMYB-like1 increased tomato chilling tolerance as well as the expression levels of CBF1, CuZnSOD, CAT, APX1, APX2, ZAT12 and ZAT10. Additionally, overexpression of sha-miR319d in tomato caused plant leaf crinkling and reduced height.

Conclusions: Overexpression of sha-miR319d confers chilling and heat stress tolerance in tomato. Sha-miR319d regulates tomato chilling tolerance, possibly by inhibiting expression of GAMYB-like1 and further alters chilling, heat and ROS signal transduction. Our research provides insight for further study of the role of sha-miR319d in tomato growth and stress regulation and lays a foundation for the genetic improvement of tomato.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6533698PMC
http://dx.doi.org/10.1186/s12870-019-1823-xDOI Listing

Publication Analysis

Top Keywords

chilling heat
20
heat stress
12
stress tolerance
12
tomato
12
overexpression sha-mir319d
12
expression levels
12
sha-mir319d
9
solanum habrochaites
8
sha-mir319d confers
8
chilling
8

Similar Publications

Our study aims to assess the thermal inactivation of non-proteolytic type B spores in a plant-based fish and to evaluate the potential of alternative heat treatments at temperatures below the safe harbor guidelines established for vacuum-packed chilled products of extended durability. First, the heat resistance of the spore suspension was determined using capillary tubes in potassium phosphate buffer at 80°C. The D value was estimated to be 0.

View Article and Find Full Text PDF

Bud dormancy is a vital physiological process in woody perennials, facilitating their adaptation to seasonal environmental changes. Satisfying genotype-specific chilling requirements (CR) and heat requirements (HR) through exposure to specific chilling and warm temperatures is essential for dormancy release and the subsequent resumption of growth. The genetic mechanisms regulating bud dormancy traits in Prunus mume remain unclear.

View Article and Find Full Text PDF

Characterization of ZAT12 protein from Prunus persica: role in fruit chilling injury tolerance and identification of gene targets.

Planta

December 2024

Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.

PpZAT12, a transcription factor differentially expressed in peach varieties with distinct susceptibility tochilling injury (CI), is a potential candidate gene for CI tolerance by regulating several identified gene targets. ZAT (zinc finger of Arabidopsis thaliana) proteins play roles in multiple abiotic stress tolerance in Arabidopsis and other species; however, there are few reports on these transcription factors (TFs) in fruit crops. This study aimed to evaluate PpZAT12, a C2H2 TF up-regulated in peach fruit by a heat treatment applied before postharvest cold storage for reducing chilling injury (CI) symptoms.

View Article and Find Full Text PDF

This research aimed to explore the changes in two sampling locations (internal and external) of the Longissimus thoracis et lumborum (LTL) beef muscle proteomes subjected to ultraviolet light before dry-aging. It further compared the biological processes and associated proteins at interplay at the external locations of UV pre-treated and control dry-aged samples. Before dry-aging, proteins related to external stimuli were differentially abundant between both locations possibly due to the early post-mortem energy metabolism attempting to compensate for energy deficiencies and stress derived from slaughter and processing.

View Article and Find Full Text PDF

Deep learning based heat transfer simulation of the casting process.

Sci Rep

November 2024

School of Materials Science and Engineering, Key Laboratory for Advanced Materials Processing Technology, Tsinghua University, Beijing, 100084, China.

Article Synopsis
  • * The prediction models are based on modified U-net architectures that incorporate Inception and CBAM modules, trained using data from 200 different geometric models representing various components like casting, mold, and chill.
  • * The resulting models achieve an impressive average accuracy of 94.5% in temperature forecasting, with a quick prediction time of only one second per time step, effectively handling complex geometries with multiple materials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!