Nitrate (NO) and ammonium (NH) are the main inorganic nitrogen (N) sources absorbed by oilseed rape, a plant that exhibits genotypic differences in N efficiency. In our previous study, the biomass, N accumulation, and root architecture of two oilseed rape cultivars, Xiangyou 15 (high N efficiency, denoted "15") and 814 (low N efficiency, denoted "814"), were inhibited under NH nutrition, though both cultivars grew normally under NO nutrition. To gain insight into the underlying molecular mechanisms, transcriptomic changes were investigated in the roots of 15 and 814 plants subjected to nitrogen-free (control, CK), NO (NT), and NH (AT) treatments at the seedling stage. A total of 14,355 differentially expressed genes (DEGs) were identified. Among the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway categories of these DEGs, carbohydrate metabolism, lipid metabolism, protein metabolism, and cell wall biogenesis were inhibited by AT treatment. Interestingly, DEGs such as N transporters, genes involved in N assimilation and genes related to cellulose synthase were also mostly downregulated in the AT treatment group. This downregulation of genes related to crucial metabolic pathways resulted in inhibition of oilseed rape growth after AT treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562433 | PMC |
http://dx.doi.org/10.3390/genes10050391 | DOI Listing |
Front Plant Sci
January 2025
Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden.
Rapeseed ( L.) is known for its high-quality seed oil and protein content. However, its use in animal feed is restricted due to antinutritional factors present in the seedcake, with sinapine being one of the main compounds that reduces palatability.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.
Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of among the four different clubroot susceptibility cultivars of oilseed rape ().
View Article and Find Full Text PDFFront Genet
January 2025
National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China.
The Ogura cytoplasmic male sterility (CMS) line of has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of is derived from the distant hybridization of and , but it carried a large number of radish fragments into , because there is no homologous allele of the restorer gene in , transferring it becomes challenging.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Crop Science, Chungbuk National University, Cheongju-si, 28644, Republic of Korea.
Glyphosate (Gly) is a widely used herbicide for weed control in agriculture, but it can also adversely affect crops by impairing growth, reducing yield, and disrupting nutrient uptake, while inducing toxicity. Therefore, adopting integrated eco-friendly approaches and understanding the mechanisms of glyphosate tolerance in plants is crucial, as these areas remain underexplored. This study provides proteome insights into Si-mediated improvement of Gly-toxicity tolerance in Brassica napus.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China. Electronic address:
The wilting and yellowing of leafy vegetables caused by spoilage bacteria resulted in serious resource wastage. This study investigated the efficacy of a combined lactic acid (LA) and tartaric acid (TA) treatment against four predominant spoilage bacteria (Erwinia persicina, Citrobacter freundii, Pseudomonas putida, and Pseudomonas punonensis) isolated from spinach and oilseed rape. Detailed analysis using Fourier-transform infrared spectroscopy, flow cytometry, scanning electron microscopy, and light microscopy revealed substantial cellular damage in the bacteria treated by LA and TA, including loss of intracellular material, and collapse of cellular morphology, as well as effective biofilm removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!