Background: Islet autophagy plays a role in glucose/lipid metabolism in type 2 diabetes mellitus. Meanwhile, fibroblast growth factor 21 (FGF21) has been found to regulate insulin sensitivity and glucose homeostasis. Whether FGF21 induces islet autophagy, remains to be elucidated. This study aimed to explore the physiological roles and signaling pathways involved in FGF21-stimulated islet autophagy under glucolipotoxic conditions.
Methods: C57/BL6J mice were fed a standard diet or high-fat diet (HFD) for 12 weeks, and islets were isolated from normal and knockout (KO) mice. Isolated islets and INS-1E cells were exposed to normal and high-concentration glucose and palmitic acid with/without FGF21 or AMPK inhibitor compound C. Real-time PCR, Western blot and immunohistochemistry/transmission electron microscopy were performed for the expression of targeted genes/proteins.
Results: HFD-treated mice showed increases in fasting plasma glucose, body weight and impaired glucose tolerance; islet protein expression of FGF21 was induced after HFD treatment. Protein expression levels of FGF21 and LC3-II (autophagy marker) were induced in mouse islets treated with high concentrations of palmitic acid and glucose, while phosphorylation of AMPK was reduced, compared with controls. In addition, induction of LC3-II protein expression was reduced in islets isolated from KO mice. Furthermore, exogenous administration of FGF21 diminished phosphorylation of AMPK and stimulated protein expression of LC3-II. Consistently, compound C significantly induced increased expression of LC3-II protein.
Conclusions: Our data indicate that glucolipotoxicity-induced FGF21 activation mediates islet autophagy via AMPK inhibition, and further consolidate the evidence for the FGF21/analog being a pharmacotherapeutic target for obesity and its related T2DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567208 | PMC |
http://dx.doi.org/10.3390/ijms20102517 | DOI Listing |
Biochem Biophys Res Commun
February 2025
Department of Endocrinology and Metabolism, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, People's Republic of China; The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China. Electronic address:
Previous studies have shown that nickel sulfate (NiSO) increases autophagy in thyroid cells and tissues. As an important organ of the endocrine system, the pancreas not only contributes to the exocrine function of digestion but also has the endocrine function of regulating blood sugar. However, it remains unknown whether NiSO increases pancreatic autophagy.
View Article and Find Full Text PDFFront Nutr
December 2024
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
Autophagy, a vital cell process, has garnered attention for its role in various diseases and potential therapeutic interventions. Dysregulation of autophagy contributes to conditions such as metabolic diseases, neurodegenerative disorders, and cancer. In diseases such as diabetes, autophagy plays a crucial role in islet β-cell maintenance and glucose homeostasis, offering potential targets for therapeutic intervention.
View Article and Find Full Text PDFCells
November 2024
Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
Viral infections leading to inflammation have been implicated in several common diseases, such as Alzheimer's disease (AD) and type 1 diabetes (T1D). Of note, herpes simplex virus 1 (HSV-1) has been reported to be associated with AD. We sought to identify the transcriptomic changes due to HSV-1 infection and anti-viral drug (acyclovir, ACV) treatment of HSV-1 infection in dissociated cells from human cerebral organoids (dcOrgs) versus stem cell-derived pancreatic islets (sc-islets) to gain potential biological insights into the relevance of HSV-1-induced inflammation in AD and T1D.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States. Electronic address:
The onset and progression of type 2 diabetes is linked to the accumulation and aggregation of human islet amyloid polypeptide (hIAPP) in the pancreas. Amyloid oligomers and fibrils formed as a result of such aggregation exert high cytotoxicity. Although some pieces of evidence suggest that lipids could alter the rate of hIAPP aggregation, the effect of lipids on the aggregation properties of this peptide remains unclear.
View Article and Find Full Text PDFIslets
December 2024
Department of Stomatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
Neuregulin 4 (Nrg4) is a brown fat-enriched endocrine factor that ameliorates lipid metabolism disorders. Autophagy is critical for pancreatic β-cell to counteract lipotoxicity-induced apoptosis. This study aimed at exploring whether Nrg4 attenuates lipotoxicity-induced β-cell apoptosis by regulating autophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!