The effectiveness of O, O/Fe, and O/nZVI processes on biomethanated distillery wastewater (BMDWW) was evaluated in terms of biodegradability index (BI) enhancement, biofuel production, COD, color & toxicity reduction. A significant increase in biodegradability, COD, color and toxicity reduction was observed in O/nZVI compared with O, O/Fe due to more hydroxyl radical production. The O/nZVI pretreated wastewater with enhanced BI (up to 0.71) showed 60% COD removal with additional biogas generation (64% methane content). From the Gas Chromatography Mass Spectrometry (GC-MS) analysis, 18 foremost organic compounds were predominantly detected in the raw distillery wastewater. The disappearance of the corresponding FTIR (Fourier Transform Infrared Spectroscopy) & GC-MS spectra during pretreatment processes signified the degradation or transformation of the recalcitrant present in the distillery wastewater. Subsequent (AnO + AO, AO) of pretreated BMDWW resulted in biodegradation rate enhancement by (1.83, 1.67), (3.5, 2.4) and (4.7, 2.9) times for O, O/Fe and O/nZVI processes respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.05.067DOI Listing

Publication Analysis

Top Keywords

distillery wastewater
16
color toxicity
12
toxicity reduction
12
biomethanated distillery
8
biodegradability enhancement
8
biofuel production
8
o/fe o/nzvi
8
o/nzvi processes
8
cod color
8
wastewater
5

Similar Publications

Optimisation of Dairy Soiled Water as a Novel Duckweed Growth Medium.

Plants (Basel)

January 2025

School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland.

As a result of intensive agriculture, large quantities of liquid wastewaters are produced. Dairy soiled water (DSW) is produced in large volumes during the milking process of cattle. It comprises essential plant nutrients such as nitrogen, phosphorus, and potassium.

View Article and Find Full Text PDF

Evidence of sewage discharge on the coalescence mechanism of aquatic microbial communities during high amplitude hydrological periods.

Sci Total Environ

January 2025

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Microbial community coalescence is a ubiquitous ecological process in various ecosystems. However, limited research has addressed the effects of the coalescence on microbial ecological processes and network structure, particularly in the context of sewage discharge during high amplitude hydrological periods. Employing 16S rRNA sequencing and species source tracking analysis, we investigated the coalescence pattern of bacterioplankton in the Chishui river and sewage across various hydrological periods.

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluates the safety of using thermochemically treated sewage sludge from a distillery's wastewater treatment plant as a soil additive by examining its physicochemical properties and the bioaccumulation of heavy metals in maize.
  • - Pyrolysis at 400 °C alters the sludge's characteristics positively, increasing pH, carbon, nitrogen, and ash content, while reducing electrical conductivity, cation exchange capacity, and harmful polycyclic aromatic hydrocarbons.
  • - Results show that adding 1% biochar from the treated sludge improves soil properties and doesn't enhance heavy metal uptake in maize or affect cress seed germination, though it does impact the soil's microbial community.
View Article and Find Full Text PDF

In this study, an Electro-Fenton process was employed to treat high-strength alcohol distillery wastewater. The simultaneously removal of chemical oxygen demand (COD), color, and turbidity were examined. The optimum value of the operational parameters including the number of electrodes and their arrangement, electrodes' interval, initial pH, and electrolyte concentration were determined by one-factor-at-a-time (OFAT).

View Article and Find Full Text PDF

Adsorption sites and interactions of pigments in molasses-based distillery effluent on starch-based composites: Ternary competitive adsorption and theoretical calculations.

J Hazard Mater

December 2024

College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China. Electronic address:

Article Synopsis
  • * The research found that CCS@FeO effectively adsorbed caffeic acid, gallic acid, and melanoidin, with varying capacities depending on the pigment, revealing the order of effectiveness as melanoidin > gallic acid > caffeic acid.
  • * Quantum chemical calculations provided insights into the adsorption mechanisms, highlighting how the quaternary ammonium groups in CCS@FeO interact with specific parts of the pigments for effective removal.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!