A Bioluminescence Resonance Energy Transfer-Based Approach for Determining Antibody-Receptor Occupancy In Vivo.

iScience

Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 2318 Kerr Hall, Chapel Hill, NC 27599-7569, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

Published: May 2019

Elucidating receptor occupancy (RO) of monoclonal antibodies (mAbs) is a crucial step in characterizing the therapeutic efficacy of mAbs. However, the in vivo assessment of RO, particularly within peripheral tissues, is greatly limited by current technologies. In the present study, we developed a bioluminescence resonance energy transfer (BRET)-based system that leverages the large signal:noise ratio and stringent energy donor-acceptor distance dependency to measure antibody RO in a highly selective and temporal fashion. This versatile and minimally invasive system enables longitudinal monitoring of the in vivo antibody-receptor engagement over several days. As a proof of principle, we quantified cetuximab-epidermal growth factor receptor binding kinetics using this system and assessed cetuximab RO in a tumor xenograft model. Incomplete ROs were observed, even at a supratherapeutic dose of 50 mg/kg, indicating that fractional target accessibility is achieved. The BRET-based imaging approach enables quantification of antibody in vivo RO and provides critical information required to optimize therapeutic mAb efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529791PMC
http://dx.doi.org/10.1016/j.isci.2019.05.003DOI Listing

Publication Analysis

Top Keywords

bioluminescence resonance
8
resonance energy
8
energy transfer-based
4
transfer-based approach
4
approach determining
4
determining antibody-receptor
4
antibody-receptor occupancy
4
in vivo
4
occupancy in vivo
4
in vivo elucidating
4

Similar Publications

Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra.

View Article and Find Full Text PDF

Small molecules targeting the eubacterial β-sliding clamp discovered by combined and screening approaches.

J Enzyme Inhib Med Chem

December 2025

Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.

Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets.

View Article and Find Full Text PDF

Application of Fluorescence- and Bioluminescence-Based Biosensors in Cancer Drug Discovery.

Biosensors (Basel)

November 2024

Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.

Recent advances in drug discovery have established biosensors as indispensable tools, particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in advancing cancer research. Various types of biosensors employed in cancer drug discovery are then explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT.

View Article and Find Full Text PDF

The constitutive (ligand-independent) signaling of G protein-coupled receptors (GPCRs) is being increasingly appreciated as an integral aspect of their function; however, it can be technically hard to detect for poorly characterized, e.g. orphan, receptors of the cAMP-inhibitory Gi-coupled (GiPCR) family.

View Article and Find Full Text PDF

Research progress in tracing technology for extracellular vesicles.

Extracell Vesicles Circ Nucl Acids

December 2023

School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China.

Cells have the capability to discharge extracellular vesicles (EVs) into a range of bodily fluids. Extracellular vesicles (EVs) encapsulate biological molecules such as proteins and nucleic acids, playing a role in facilitating cell-cell communication. They actively engage in a myriad of physiological and pathological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!