Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization.

Biosens Bioelectron

School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China; Institute of Materials and Clean Energy, Shandong Normal University, Jinan, 250014, People's Republic of China. Electronic address:

Published: July 2019

A suspended carbon nanotube (SCNT)-based field effective transistor (SCNT-FET), which was fabricated by utilizing the surface tension of liquid silver to suspend a CNT between two Pd electrodes, was proposed for the detection of DNA hybridization. Benefits from the separation between the CNT and the substrates could be observed; namely, the conductivity of a SCNT-FET was much higher (two orders of magnitude) than that of a FET based on an unsuspended CNT and about 50% sensing surface of CNT was freed from substrate. The Slater-Koster tight-binding method was adopted for geometry optimization and transport property calculation of the SCNT bound with DNA. The result showed that the conductance (G = 1/R) of the SCNT decreased in order with the binding of single-stranded DNA (SSDNA, probe DNA) and double-stranded DNA (DSDNA) and that the ability of DSDNA to weaken the conductivity of the SCNT was several times higher than that of SSDNA. SEM and Raman spectroscopy were used to demonstrate that DNA could be bound successfully onto the SCNT using a 1-pyrenebutanoic acid succinimidyl ester (PBASE) as a linkage. Ultra-high sensitivity detection of DNA [with a limit of detection (LOD) as low as 10 aM] was obtained using such an SCNT-FET, which showed a lower value than that of a previously reported FET DNA biosensor whose sensing materials were in direct contact with the substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2019.04.054DOI Listing

Publication Analysis

Top Keywords

detection dna
12
dna
9
dna hybridization
8
suspended cnt-based
4
cnt-based fet
4
fet sensor
4
sensor ultrasensitive
4
ultrasensitive label-free
4
detection
4
label-free detection
4

Similar Publications

Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet.

View Article and Find Full Text PDF

Background: This study aims to detect Mycobacterium tuberculosis complex (MTBC) DNA in intraocular fluid from clinically suspected tuberculous uveitis patients using multiplex polymerase chain reaction (PCR) and investigate the diagnostic utility of multiplex PCR for tuberculous uveitis.

Methods: Primers targeting three specific genes (MPB64, CYP141, and IS6110) within the MTBC genome were designed. Multiplex PCR was conducted using DNA from the H37Rv strain as well as DNA extracted from fluids of confirmed tuberculosis patients to assess primer specificity and method feasibility.

View Article and Find Full Text PDF

Background: Improving the germination performance of bread wheat is an important breeding target in many wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, including 202 landraces and 90 cultivars.

View Article and Find Full Text PDF

The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.

View Article and Find Full Text PDF

Purpose: Cryptosporidium spp. and Giardia duodenalis are zoonotic protozoan parasites that are widely seen in domestic and wild animals worldwide. While these pathogens, which affect the digestive system of the hosts, cause high economic losses in animal breeding, they are also considered an important public health problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!