Effects of the pyrolysis temperature on the biotoxicity of Phyllostachys pubescens biochar in the aquatic environment.

J Hazard Mater

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

Published: August 2019

The use of biochar as an adsorbent for environmental remediation has been attracting increasing interest. However, biochar can contain contaminants such as polycyclic aromatic hydrocarbons (PAHs) and metals (e.g., Cu, Pb, and Zn). We prepared Phyllostachys pubescens biochars at temperatures between 400 and 700 °C. The biochars were used in bioassays using Vibrio qinghaiensis Q67, Daphnia magna, Pseudokirchneriella subcapitata, and Limnodrilus hoffmeisteri to characterize the toxicities and effects of the biochars. The PAH, Cu, Pb, and Zn contents of the biochars were 8.59-14.67, 1.82-3.26, 1.17-3.53, and 8.76-16.47 mg/kg, respectively. The biochars gave maximum P. subcapitata, D. magna, and V. qinghaiensis Q67 inhibition rates of 6.47%, 6.70%, and 29.87%, respectively. The biochars produced at high pyrolysis temperatures (≥600 °C) had low acute biotoxicities to L. hoffmeisteri and barely affected L. hoffmeisteri biomass, reproduction, and lipid content. The biochars may therefore be suitable for sediment remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.05.010DOI Listing

Publication Analysis

Top Keywords

phyllostachys pubescens
8
qinghaiensis q67
8
biochars
7
effects pyrolysis
4
pyrolysis temperature
4
temperature biotoxicity
4
biotoxicity phyllostachys
4
pubescens biochar
4
biochar aquatic
4
aquatic environment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!