Two new two-dimensional, broadband, solid-state NMR experiments for separating and correlating the quadrupolar and shift interactions of spin I=1 nuclei in paramagnetic systems are proposed. The new pulse sequences incorporate the short, high-power adiabatic pulses (SHAPs) into the shifting d-echo experiment of Walder et al. [J. Chem. Phys., 142, 014201 (2015)], in two different ways, giving double and quadruple adiabatic shifting d-echo sequences. These new experiments have the advantage over previous methods of both suppressing spectral artefacts due to pulse imperfections, and exhibiting a broader excitation bandwidth. Both experiments are analysed with theoretical calculations and simulations, and are applied experimentally to the H NMR of deuterated CuCl ⋅2HO, and two deuterated samples of the ion conductor oxyhydride BaTiOH prepared using two different methods. For the CuCl ⋅2HO sample, both new methods obtain very high-quality spectra from which the parameters describing the shift and quadrupolar interaction tensors, and their relative orientation, were extracted. The two BaTiOH samples exhibited different local hydride environments with different tensor parameters. The H spectra of these oxyhydrides exhibit inhomogeneous broadening of the H shifts, and so whilst the quadrupolar interaction parameters were easily extracted, the measurement of the shift parameters was more complex. However, effective shift parameters were extracted, which combine the effects of both the paramagnetic shift tensor and the inhomogeneous broadening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ssnmr.2019.05.001 | DOI Listing |
RSC Adv
January 2025
Faculty of Systems Engineering, Wakayama University 930 Sakaedani Wakayama 640-8510 Japan
C NMR chemical shifts ((C)) were analysed MO theory, together with the origin, using (C), (C) and (C), where C was selected as the standard for the analysis since (C: C) = 0 ppm. An excellent relationship was observed between (C) and the charges on C for (C, C, C, C and C) and (C, CH , CH and CH). However, such a relationship was not observed for the carbon species other than those above.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation ( ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for (e.
View Article and Find Full Text PDFChembiochem
January 2025
Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, 04103, Leipzig, Germany.
Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada.
Purpose: Brain temperature is tightly regulated and reflects a balance between cerebral metabolic heat production and heat transfer between the brain, blood, and external environment. Blood temperature and flow are critical to the regulation of brain temperature. Current methods for measuring in vivo brain and blood temperature are invasive and impractical for use in small animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!