A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An enhanced charge-driven intranasal delivery of nicardipine attenuates brain injury after intracerebral hemorrhage. | LitMetric

An enhanced charge-driven intranasal delivery of nicardipine attenuates brain injury after intracerebral hemorrhage.

Int J Pharm

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China. Electronic address:

Published: July 2019

Intranasal drug delivery provided an alternative and effective approach for the intervention of an intracerebral hemorrhage (ICH). However, the short retention time at the absorption site and slow drug transport in intranasal gel influence the drug bioavailability and outcome of ICH. Herein, we fabricated a novel intranasal gel with oriented drug migration utilizing a charge-driven strategy to attenuate brain injury after ICH. Nicardipine hydrochloride (NCD) was entrapped in chitosan nanoparticles (CS NPs) and dispersed in an HAMC gel. Subsequently, one side of the gel was coated with a positively charged film. The oriented migration of CS NPs in the HAMC gel was determined, and the drug bioavailability was also enhanced. Furthermore, a blood-induced ICH rat model was established to evaluate the therapeutic effect of CS NPs + HAMC composites. Intranasal administration of the CS NPs + HAMC (+) composite showed a stronger neuroprotective effect in terms of brain edema reduction and neural apoptosis inhibition compared to the CS NPs + HAMC composite. These results suggested that the oriented and rapid drug transport from nose to brain can be achieved using the charge-driven strategy, and this intranasal drug delivery system has the potential to provide a new therapeutic strategy for the treatment of ICH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2019.05.050DOI Listing

Publication Analysis

Top Keywords

brain injury
8
intracerebral hemorrhage
8
intranasal drug
8
drug delivery
8
drug transport
8
intranasal gel
8
drug bioavailability
8
charge-driven strategy
8
hamc gel
8
nps + hamc composite
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!