The dielectric constant for water is reduced under confinement. Although this phenomenon is well known, the underlying physical mechanism for the reduction is still in debate. In this work, we investigate the effect of the orientation of hydrogen bonds on the dielectric properties of confined water using molecular dynamics simulations. We find a reduced rotational diffusion coefficient for water molecules close to the solid surface. The reduced rotational diffusion arises due to the hindered rotation away from the plane parallel to the channel walls. The suppressed rotation in turn affects the orientational polarization of water, leading to a low value for the dielectric constant at the interface. We attribute the constrained out-of-plane rotation to originate from a higher density of planar hydrogen bonds formed by the interfacial water molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b00543DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
12
bonds dielectric
8
dielectric properties
8
interfacial water
8
dielectric constant
8
reduced rotational
8
rotational diffusion
8
water molecules
8
water
6
dielectric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!