The crystal structures of chelates formed between each stable paramagnetic lanthanide ion and the octadentate polyamino carboxylate ligand DOTMA are described. A total of 23 individual chelates structures were obtained; in each chelate the coordination geometry around the metal ion is best described as a twisted square antiprism (torsion angle -25.0°--31.4°). Despite the uniformity of the general coordination geometry provided by the DOTMA ligand, there is a considerable variation in the hydration state of each chelate. The early Ln chelates are associated with a single inner sphere water molecule; the Ln-OH interaction is remarkable for being very long. After a clear break at gadolinium, the number of chelates in the unit cell that have a water molecule interacting with the Ln decreases linearly until at Tm no water is found to interact with the metal ion. The Ln-OH distance observed in the chelates of the later Ln ions are also extremely long and increase as the ions contract (2.550-2.732 Å). No clear break between hydrated and dehydrated chelates is observed; rather this series of chelates appear to represent a continuum of hydration states in which the ligand gradually closes around the metal ion as its ionic radius decreases (with decreased hydration) and the metal drops down into the coordination cage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700027PMC
http://dx.doi.org/10.1002/chem.201902068DOI Listing

Publication Analysis

Top Keywords

metal ion
16
crystal structures
8
chelates
8
hydration states
8
coordination geometry
8
water molecule
8
clear break
8
metal
5
ion
5
structures dotma
4

Similar Publications

Background: Glial cells exhibit distinct transcriptional responses to β-amyloid pathology in Alzheimer's disease (AD). While sophisticated single-cell based methods have revealed heterogeneous glial subpopulations in the human AD brain, the histological localization of these multicellular responses to AD pathology has not been fully characterized due to the loss of spatial information. Here, we combined spatial transcriptomics (ST) with immunohistochemistry to explore the molecular mechanisms in the neuritic plaque niche.

View Article and Find Full Text PDF

Background: Imbalanced Fe levels can lead to oxidative stress and initiate ferroptosis, an Fe-dependent cell death that involves lipid peroxidation and can lead to neuron cell loss in neurodegenerative diseases including Alzheimer's disease (AD). While the Fe/Fe ratio has been identified as the primary determining factor for lipid peroxidation, the role of Fe redox equilibrium and dynamic in AD is not well understood, due to limited tools for visualizing Fe and Fe simultaneously. To overcome this limitation, we recently reported DNAzyme-based sensors for simultaneous imaging of Fe and Fe.

View Article and Find Full Text PDF

MgCo(OH)@C as an electrode for supercapacitors: effect of doping level on energy storage capability.

Dalton Trans

January 2025

Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.

Incorporating non-electrochemically active elements (such as Zn and Mg) into the framework of active components can enhance structural stability, leading to improved cycling performance. However, limited research has been conducted on the impact of varying doping concentrations. In this study, we conducted a comprehensive analysis of how different levels of Mg doping in Co(OH) affect the supercapacitor performance.

View Article and Find Full Text PDF

Generating Strong Metal-Support Interaction and Oxygen Vacancies in Cu/MgAlO Catalysts by CO Treatment for Enhanced CO Hydrogenation to Methanol.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China.

Strong metal-support interactions (SMSIs) are essential for optimizing the performance of supported metal catalysts by tuning the metal-oxide interface structures. This study explores the hydrogenation of CO to methanol over Cu-supported catalysts, focusing on the synergistic effects of strong metal-support interaction (SMSI) and oxygen vacancies introduced by the CO treatment to the catalysts on the catalytic performance. Cu nanoparticles were immobilized on Mg-Al layered double oxide (LDO) supports and modified with nitrate ions to promote oxygen vacancy generation.

View Article and Find Full Text PDF

Carbon Defects as Highly Active Sites for Gold Detection and Recovery.

Angew Chem Int Ed Engl

January 2025

Shanghai Normal University, Chemistry, No. 100, Guilin Road, 200234, Shanghai, CHINA.

The use of precious metals (PMs) in many areas, such as printed circuit boards, catalysts, and target drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge in terms of zero-valent PMs as final product. We report a highly hydrophilic carbon dot (CD) as reductant (electron donor), the defects in CD served as efficient active sites for zero-valent PMs recovery with an electron-donating capacity is ~1.7 mmol g-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!