A cell therapy product of transforming growth factor (TGF)-β1-transduced chondrocytes has been commercialized to treat osteoarthritis of the knee via intra-articular injection. The need for arthroscopic application of the cells to simultaneously treat intra-articular pathologies of knee osteoarthritis is increasingly urgent. The purpose of this study was to optimize TGF-β1-transduced chondrocytes for arthroscopic application. The optimal composition of chondrocytes and thrombin was initially determined by measuring the consolidation time of a diverse ratio of chondrocytes and thrombin mixed with 1 ml of fibrinogen. The consolidation time of the diverse ratio of fibrinogen and atelocollagen mixed with the determined optimal ratio of chondrocytes and thrombin was evaluated. The mixture of the determined optimal ratio of TGF-β1-transduced chondrocytes, atelocollagen, fibrinogen, and thrombin was applied to the cartilage defect of the 3D printed knee joint model arthroscopically. The status of the mixture in the defect was then evaluated. Chondrogenic activities of TGF-β1-transduced chondrocytes mixed with atelocollagen were evaluated. The determined ratio of TGF-β1-transduced chondrocytes to thrombin was 8:2 and that of fibrin to atelocollagen was also 8:2. Excellent maintenance of conformation of the mixture of TGF-β1-transduced chondrocytes, atelocollagen, fibrinogen, and thrombin in the cartilage defect of the 3D printed knee joint model was observed arthroscopically. Increased chondrogenic activities were observed in the group of TGF-β1-transduced chondrocytes mixed with atelocollagen. TGF-β1-transduced chondrocytes can be applied arthroscopically to treat cartilage defects of the knee at an optimized mixing ratio of atelocollagen, fibrinogen, and thrombin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532938 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217601 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!