Objectives: To examine differences in growth trajectories of fetal brain fissures in the growth restricted fetus (FGR) compared to controls.

Methods: We selected a subgroup of 227 women with a singleton pregnancy from the Rotterdam Periconceptional Cohort. Participants received three-dimensional ultrasound (3D-US) examinations of the fetal brain at 22, 26 and 32 weeks of gestational age (GA). The left and right Sylvian, insula and parieto-occipital fissures (POF) were measured in standardized planes. Linear mixed models with adjustment for potential confounders were applied to estimate differences between the trajectories of brain fissure depth measurements of FGR and controls.

Results: 22 FGR and 172 controls provided 31 and 504 3D-US respectively for longitudinal brain fissure depth measurements. Success rates for the Sylvian and insula depth measurements were over 80% and for POF over 62% at all GA. In FGR compared to controls, the trajectory of the right Sylvian fissure depth was significantly decreased (ß = -4.30, 95%CI = -8.03;-0.56, p = 0.024) while its growth rate was slightly increased (ß = 0.02, 95%CI = 0.00;0.04, p = 0.04), after adjustment for GA, head circumference, gender, educational level and parity.

Conclusions: The small differences in brain fissure measurements between 22 and 32 weeks GA in FGR warrant further investigation in larger cohorts with postnatal follow-up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532926PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217538PLOS

Publication Analysis

Top Keywords

fetal brain
12
brain fissure
12
fissure depth
12
depth measurements
12
three-dimensional ultrasound
8
brain fissures
8
fissures growth
8
growth restricted
8
restricted fetus
8
fgr compared
8

Similar Publications

Cortical interneurons generated from ganglionic eminence via a long-distance journey of tangential migration display evident cellular and molecular differences across brain regions, which seeds the heterogeneous cortical circuitry in primates. However, whether such regional specifications in interneurons are intrinsically encoded or gained through interactions with the local milieu remains elusive. Here, we recruit 685,692 interneurons from cerebral cortex and subcortex including ganglionic eminence within the developing human and macaque species.

View Article and Find Full Text PDF

Progressive Loss of Cerebral Structures in ALG11-Related Congenital Disorder Glycosylation.

Pediatr Neurol

December 2024

Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia; Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia. Electronic address:

Background: Congenital disorders of glycosylation (CDG) are a group of metabolic disorders related to dysfunctional glycoprotein and glycolipid biosynthesis. ALG11-related CDG is a rare member of this group, characterized by severe neurodevelopmental impairment, progressive microcephaly, sensorineural hearing loss, and epilepsy. The objective of this report is to provide an update on the phenotype and brain magnetic resonance imaging (MRI) at age seven years for a patient initially described in early infancy with fetal brain disruption sequence.

View Article and Find Full Text PDF

Background: Intrauterine growth restriction (IUGR) is a severe condition in which the fetus fails to reach its genetically predetermined growth potential, impairing prenatal development and predisposing individuals to postnatal consequences that may persist into adulthood. Although fetal mechanisms such as the brain-sparing effect have been proposed to protect the brain against IUGR-related deficits, the extent of this protection remains unclear.

Objective: To conduct a systematic review that demonstrates prenatal morphofunctional abnormalities in the brain of individuals with IUGR.

View Article and Find Full Text PDF

[Recommendations for clinical practice: Prevention and management of varicella zoster virus (VZV) infection during pregnancy and the perinatal period (extended version)].

Gynecol Obstet Fertil Senol

January 2025

Division of Virology, WHO Rubella National Reference Laboratory, Paris Saclay University Hospital, APHP, Paris, France; Université Paris-Saclay, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France.

The Société de Pathologie Infectieuse de Langue Française released in 2024 a new national recommendation for clinical practice on the prevention and management of varicella zoster virus (VZV) infection during pregnancy and the perinatal period. The previous recommendation was issued in 1998, at a time of anti-VZV immunoglobulins shortage; it has hence become obsolete. This recommendation is a formalized expert consensus focusing on infectious diseases management; it is drawn up by a multidisciplinary working group (infectiologists, obstetricians, pediatricians, microbiologists, midwives, hygienists).

View Article and Find Full Text PDF

Dermatologists have been interested in recent advancements in regenerative therapy. Current research is actively investigating the possibility of placental tissue derivatives to decelerate the skin aging process, enhance skin regeneration, reduce scarring, and prevent hair loss. Amniotic membranes (AM) play a crucial role in regenerative medicine as they serve as a suitable means of transporting stem cells, growth hormones, cytokines, and other essential compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!