Although chemical modifications on conjugated molecules are widely applied for the purpose of improving processability and device performances, the effect of the modification was far less investigated. Here, five S, N-hexacenes are studied to reveal the influences of (1) the lateral alkyl chain, (2) the terminal group (thiophene vs benzene), and (3) the end-capping phenyl group of the hexacenes on the morphology and organic field-effect transistor (OFET) performances. Crystal arrays of the hexacenes were prepared via polydimethylsiloxane (PDMS)-assisted crystallization (PAC) prior to morphological and OFET characterizations. The lattice structures and crystal quality of the hexacenes were evaluated by microscopy and diffraction techniques including single-crystal diffractometer, electron diffraction, and grazing incidence wide-angle X-ray scattering. The systematic analyses led to the following conclusions: (1) the bulkier alkyl side chain assists to form more densely packed crystals with less structural defects; (2) the terminal thiophene rings bring about higher-lying E, more ordered phase, and crystal orientation, whereas the terminal benzene rings deteriorate the structural order of the active layer and result in the liquid crystal phase; and (3) the phenyl end caps ameliorate the morphological order, intermolecular overlapping, thermal stability and elevate E. Thus, EH-DTPTt-Ph delivers the highest μ, contributing to high-lying E, well-oriented crystal array with a longer correlation length, and suitable lattice orientation. This systematic research provides the aspects about the effects of the functionalized S, N-hexacenes on the morphology and OFET characteristics, which is anticipated to be useful for the molecular design of heteroacenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b04284 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!