Topological QSAR Modelling of Carboxamides Repellent Activity to Aedes Aegypti.

Mol Inform

QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Science, University of Insubria, Varese, Italy.

Published: August 2019

Aedes aegypti vector control is of paramount importance owing to the damages induced by the various severe diseases that these insects may transmit, and the increasing risk of important outbreaks of these pathologies. Search for new chemicals efficient against Aedes aegypti, and devoid of side-effects, which have been associated to the currently most used active substance i. e. N,N-diethyl-m-toluamide (DEET), is therefore an important issue. In this context, we developed various Quantitative Structure Activity Relationship (QSAR) models to predict the repellent activity against Aedes aegypti of 43 carboxamides, by using Multiple Linear Regression (MLR) and various machine learning approaches. The easy computation of the four topological descriptors selected in this study, compared to the CODESSA descriptors used in the literature, and the predictive ability of the here proposed MLR and machine learning models developed using the software QSARINS and R, make the here proposed QSARs attractive. As demonstrated in this study, these models can be applied at the screening level, to guide the design of new alternatives to DEET.

Download full-text PDF

Source
http://dx.doi.org/10.1002/minf.201900029DOI Listing

Publication Analysis

Top Keywords

aedes aegypti
16
repellent activity
8
activity aedes
8
mlr machine
8
machine learning
8
topological qsar
4
qsar modelling
4
modelling carboxamides
4
carboxamides repellent
4
aedes
4

Similar Publications

The ethanol extract of as an ovicidal agent against .

Narra J

December 2024

Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Dengue hemorrhagic fever (DHF) is a major health concern in tropical and subtropical countries. Indonesia has DHF cases perennially every year. On the other hand, Indonesia is abundant with seaweed ), which can be found across its seashore.

View Article and Find Full Text PDF

Potential of emodepside for vector-borne disease control.

Malar J

January 2025

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Background: Emodepside is an anthelmintic used in veterinary medicine that is currently under investigation in human clinical trials for the treatment of soil-transmitted helminths and possibly Onchocerca volvulus. Emodepside targets the calcium-activated voltage-gated potassium slowpoke 1 (SLO-1) channels of presynaptic nerves of pharynx and body wall muscle cells of nematodes leading to paralysis, reduced locomotion and egg laying, starvation, and death. Emodepside also has activity against Drosophila melanogaster SLO-1 channels.

View Article and Find Full Text PDF

Insecticidal effects of Sargassum vulgare and Caulerpa racemosa extracts on Aedes aegypti.

Parasitol Int

January 2025

Department of Fundamental Chemistry, Center for Natural Sciences, Federal University of Pernambuco, Av. Jorn. Aníbal Fernandes, s/n - Cidade Universitária, 50740-560 Recife, Pernambuco, Brazil. Electronic address:

Dengue is a viral disease present in many regions of the world. Aedes aegypti transmits it, and the most effective way to eliminate the mosquito is during the larval stage. Seaweeds possess metabolites with insecticidal properties, making them potential sources of new larvicides and viable alternatives to synthetic products used to control insect vectors of diseases.

View Article and Find Full Text PDF

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy).

View Article and Find Full Text PDF

Susceptibility to organophosphate insecticides in Aedes aegypti (Diptera: Culicidae) from northern Colombia and associated resistance mechanisms.

Parasit Vectors

January 2025

Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia.

Background: Aedes aegypti is the primary vector of dengue, chikungunya, and Zika viruses in Colombia. Various insecticides, including pyrethroid, organophosphate, and carbamate insecticides; growth regulators; and biological insecticides, such as Bacillus thuringiensis var. israelensis, have been used to control Ae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!