Importance: Age-related macular degeneration (AMD) is a common threat to vision loss in individuals older than 50 years. While neovascular complications in AMD are treatable, there is currently no therapy for geographic atrophy secondary to AMD. Geographic atrophy lesion progression over time shows considerable interindividual variability, but little is known about prognostic factors.
Objective: To elucidate the contribution of common genetic variants to geographic atrophy lesion growth.
Design, Setting, And Participants: This pooled analysis combined 4 independent studies: the Fundus Autofluorescence Imaging in Age-Related Macular Degeneration (FAM) study, the Directional Spread in Geographic Atrophy (DSGA) study, the Age-Related Eye Disease Study (AREDS), and the Geographic Atrophy Treatment Evaluation (GATE) study. Each provided data for geographic atrophy lesion growth in specific designs. Patients with geographic atrophy secondary to AMD were recruited to these studies. Genotypes were retrieved through the database of Genotypes and Phenotypes (for AREDS) or generated at the Cologne Center for Genomics (for FAM, DSGA, and GATE).
Main Outcomes: The correlation between square root-transformed geographic atrophy growth rate and 7 596 219 genetic variants passing quality control was estimated using linear regression. The calculations were adjusted for known factors influencing geographic atrophy growth, such as the presence of bilateral geographic atrophy as well as the number of lesion spots and follow-up times.
Main Outcomes And Measures: Slopes per allele, 95% CIs, and P values of genetic variants correlated with geographic atrophy lesion growth.
Results: A total of 935 patients (mean [SD] age, 74.7 [7.8] years; 547 female participants [59.0%]) were included. Two gene loci with conservative genome-wide significance were identified. Each minor allele of the genome-wide associated variants increased the geographic atrophy growth rate by a mean of about 15% or 0.05 mm per year. Gene prioritization within each locus suggests the protein arginine methyltransferase 6 gene (PRMT6; chromosome 1; slope, 0.046 [95% CI, 0.026-0.066]; P = 4.09 × 10-8) and the lanosterol synthase gene (LSS; chromosome 21; slope, 0.105 [95% CI, 0.068-0.143]; P = 4.07 × 10-7) as the most likely progression-associated genes.
Conclusions And Relevance: These data provide further insight into the genetic architecture of geographic atrophy lesion growth. Geographic atrophy is a clinical outcome with a high medical need for effective therapy. The genes PRMT6 and LSS are promising candidates for future studies aimed at understanding functional aspects of geographic atrophy progression and also for designing novel and targeted treatment options.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547131 | PMC |
http://dx.doi.org/10.1001/jamaophthalmol.2019.1318 | DOI Listing |
Transl Vis Sci Technol
January 2025
FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Purpose: Geographic atrophy (GA), an advanced form of dry age-related macular degeneration (AMD), has limited treatment options. This study introduces a novel mouse model featuring an expanding GA patch that can be used to test mechanisms and therapeutics.
Methods: C57Bl/6J male mice (n = 96) aged 9-10 weeks received an intraperitoneal (IP) injection of 20 mg/kg sodium iodate (NaIO3).
Int J Retina Vitreous
January 2025
New England Eye Center, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
Purpose: To assess the repeatability of a microperimetry methodology for quantifying visual function changes in the junctional zone of eyes with geographic atrophy (GA) in the clinical trial context.
Methods: A post hoc analysis of the OAKS phase III trial was conducted, which enrolled patients with GA secondary to age-related macular degeneration. Microperimetry using a standard 10 - 2 fovea centered grid was performed at baseline and follow-up visits.
Medicina (Kaunas)
December 2024
BTI Biotechnology Institute, 01005 Vitoria, Spain.
: Age-related macular degeneration (AMD) is the leading cause of low vision and legal blindness in adults in developed countries. Wet AMD can be successfully treated using vascular endothelial growth factor (VEGF) inhibitors; however, dry AMD currently has no effective treatment. The purpose of this study is to analyze the efficacy of intraocular injection of plasma rich in growth factors (PRGF) in an AMD mouse model induced by intraperitoneal administration of sodium iodate.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Ophthalmology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
: Lesions characterized as complete retinal pigment epithelium and outer retinal atrophy (cRORA) are linked to the progression of intermediate age-related macular degeneration (iAMD). However, the extent of functional impairment of such precursor lesions remains uncertain. : In this cross-sectional study, 4 participants (mean age ± standard deviation: 71.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
School of Medicine, Nankai University, Tianjin 300071, China.
Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly, significantly diminishing quality of life. Currently, there is no available treatment to reverse retinal degeneration and neuronal loss, prompting a focus on interventions that slow the progression of intermediate AMD and geographic atrophy. Berries are rich in bioactive compounds, including flavonoids, anthocyanins, carotenoids, and resveratrol, known for their antioxidant, anti-inflammatory, and anti-angiogenic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!