A palladium/norbornene cooperative catalysis promoted annulation involving an ortho-C-H amination and intramolecular Heck cascade between aryl iodides and functionalized amination reagents is reported, thereby providing a highly convergent access to the unique N-containing bridged scaffolds: hexahydro-2,6-methano-1-benzazocine. The salient features of the reaction include its broad substrate scope (with respect to aryl iodides), its high step economy, and good chemoselectivity. Preliminary studies underscore the future promise of rendering this Catellani-type annulation enantioselective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cc03126j | DOI Listing |
Org Lett
July 2024
New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
Palladium/norbornene cooperatively catalyzed Catellani-type reactions were normally limited to aryl iodides as substrates. The employment of aryl bromides has remained challenging. Herein a Pd/NBE cooperatively catalyzed Catellani-type reaction of 2-bromoaryl ketone is described.
View Article and Find Full Text PDFJ Am Chem Soc
July 2024
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
Synthesis of interior-functionalized dendritic macromolecules is generally tedious and labor-intensive, which has been a key factor hampering their practical applications. Here, we have revisited this long-standing challenge and devised a modular and convergent platform to synthesize multifunctional dendrons with all-carbon backbones up to four generations via an functionalization strategy. Enabled by the palladium/norbornene cooperative catalysis, different functional groups can be introduced to each generation of dendrons during the dendron growth, making it convenient for systematic comparison of their properties.
View Article and Find Full Text PDFOrg Lett
June 2024
Department State Key Laboratory of Applied Organic Chemistry, Department of Chemistry Institution, Lanzhou University, Lanzhou 730000, P. R. China.
The Catellani reaction offers an opportunity to address multiple chemical bonds in a single pot. However, it is still quite a challenge to construct fully substituted olefins via this strategy, especially in electron-rich, unstable, and highly functionalized glycals. Herein we report the first palladium-catalyzed Catellani reaction for the direct preparation of 1,2-disubstituted C-aryl glycosides from easily available 2-iodoglycals, bromoaryl, and alkene/alkyne substrates.
View Article and Find Full Text PDFJ Am Chem Soc
April 2024
Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.
1,2-Azaborines, a unique class of BN-isosteres of benzene, have attracted great interest across several fields. While significant advancements have been made in the postfunctionalization of 1,2-azaborines, challenges still exist for the selective functionalization of the C4 position and access to 1,2-azaborines with five or six independently installed substituents. Here we report a rapid and modular method for C3 and C4 difunctionalization of 1,2-azaborines using the palladium/norbornene (Pd/NBE) cooperative catalysis.
View Article and Find Full Text PDFOrg Lett
March 2024
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
Herein, we present a novel Catellani-type reaction that employed aryl-thianthrenium salts as aryl substrates to trigger the subsequent palladium/norbornene cooperatively catalyzed progress. This strategy can achieve site-selective C-H difunctionalization of aryl compounds without directing groups or a known initiating reagent. A series of functionalized syntheses of bioactive molecules further demonstrated the potential of this strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!