A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Generation of a Full-Thickness Human Skin Equivalent on an Immunodeficient Mouse. | LitMetric

Generation of a Full-Thickness Human Skin Equivalent on an Immunodeficient Mouse.

Methods Mol Biol

Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.

Published: January 2021

Human skin equivalents composed of epidermal cells and fibroblasts are important for modeling human epidermal development, testing new therapeutics, and designing novel treatment strategies for human skin diseases. Here, we describe a procedure for the generation of an in vivo full-thickness human skin equivalent on an immunodeficient mouse using a grafting chamber system. The protocol involves mixing human epidermal cells and fibroblasts in a silicone grafting chamber that is surgically inserted onto the muscle fascia of a recipient immunodeficient mouse. Following the removal of the silicone chamber, the graft area is exposed to air to induce stratification of developing epidermis, resulting in the reconstitution of full-thickness human skin tissue on a live mouse. This grafting system provides a straightforward approach to study human skin diseases in an animal model and has been previously used to determine the ability of both mouse and human primary epidermal cells and cells derived from pluripotent stem cells to regenerate functional skin in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868296PMC
http://dx.doi.org/10.1007/7651_2019_236DOI Listing

Publication Analysis

Top Keywords

human skin
24
full-thickness human
12
immunodeficient mouse
12
epidermal cells
12
human
9
skin equivalent
8
equivalent immunodeficient
8
mouse human
8
cells fibroblasts
8
human epidermal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!