It was well established that microbial communities are the major drive for the formation of arsenic-contaminated groundwater. However, it remains to be elucidated for how nitrate/nitrite affects the microorganisms-catalyzed dissolution and reduction of arsenic. To address this issue, we collected soil samples containing high-contents of arsenic from the Shimen Realgar Mine area. Microcosm assay indicated that addition of nitrate/nitrite significantly inhibited the dissolution, reduction and release of As and Fe caused by the biological catalysis of microbial communities in the soils, meanwhile nitrate/nitrite was reduced into N. To further investigate the molecular mechanism of this finding, we used a representative dissimilatory arsenate-respiring strain Shewanella sp. GL90 from the soils to perform the arsenic release assay. GL90 can efficiently catalyze the reductive dissolution, and promote the release of As and Fe in soils. It is interesting to see that the addition of nitrate/nitrite to the soils led to marked decreases in the GL90-mediated dissolution of As and Fe in the soils. Moreover, we found that this finding was attributed to that nitrate/nitrite significantly inhibited the transcription of the gene of the respiratory arsenate reductase protein in GL90 cells. This work provided new insights into the mechanisms for the coupling of As, N and Fe geochemical cycles in arsenic-rich soils, and for how environmental factors affect As concentration in groundwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10646-019-02050-0 | DOI Listing |
PLoS One
January 2025
Faculty of Pharmacy, Sardar Bahadur Khan Women University Quetta, Quetta, Pakistan.
Controlled-release microparticles offer a promising avenue for enhancing patient compliance and minimizing dosage frequency. In this study, we aimed to design controlled-release microparticles of Glipizide utilizing Eudragit S100 and Methocel K 100 M polymers as controlling agents. The microparticles were fabricated through a simple solvent evaporation method, employing various drug-to-polymer ratios to formulate different controlled-release batches labeled as F1 to F5.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Earth System Science, Tianjin University, Tianjin 300072, China.
Contained arsenic (As) and unsafe brackish groundwater irrigation can lead to serious As pollution and increase the ecological risk in cultivated soils. However, little is known about how Fe oxides and microbes affect As migration during soil irrigation processes involving arsenic-contaminated brackish groundwater. In this study, the samples (porewater and soil) were collected through the dynamic soil column experiments to explore the As migration process and its effect factors during soil irrigation.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute for Sustainability, Energy and Environment, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Critical source areas (CSAs) can act as a source of phosphorus (P) during intermittent rainfall events and contribute to dissolved P loss via runoff. Dissolved forms of P are readily accessible for plant and algal uptake; hence it is a concern in terms of the eutrophication of freshwater bodies. The potential of CSAs to release dissolved P to surface runoff upon intermittent short-term submergence caused by different rainfall events has not been studied at a field-scale in New Zealand previously.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Naturally widespread ferrihydrite is unstable and often coexists with complex ions, such as the heavy metal ion Pb(II). Ferrihydrite could fix Pb(II) by precipitation and hydroxyl adsorption, but release Pb(II) with mineral aging. Gallic acid plays an important role in influencing the geochemical behavior of ferrihydrite-Pb, and anoxia is one of the factors influencing the transformation of mineral.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China; State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China. Electronic address:
In dense nonaqueous phase liquid (DNAPL) contaminant source zones, aqueous concentrations of trichloroethene (TCE) in groundwater may approach saturation levels (8.4 mM). It is generally believed that such saturation concentrations are toxic to organohalide-respiring bacteria (OHRB), thus limiting the effectiveness of bioremediation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!