Huperzine A (HupA) is a potent acetylcholinesterase (AChE) inhibitor of a great consideration as a prospective drug candidate for Alzheimer's disease treatment. Production of HupA by endophytes offers an alternative challenge to reduce the massive plant harvest needed to meet the increasing demand of HupA. In the current study, some endophytic fungal and actinobacterial isolates from the Chinese herb, Huperzia serrata, underwent liquid fermentation, alkaloid extraction, and screening for AChE inhibition and HupA production. Among these isolates, Alternaria brassicae AGF041 strain was the only positive strain for HupA production with the maximum AChE inhibition of 75.5%. Chromatographic analyses verified the identity of the produced HupA. The HupA production was efficiently maximized up to 42.89 μg/g of dry mycelia, after optimization of thirteen process parameters using multifactorial statistical approaches, Plackett-Burman and central composite designs. The statistical optimization resulted in a 40.8% increase in HupA production. This is the first report to isolate endophytic actinobacteria with anti-AChE activity from H. serrata, and to identify an endophytic fungus A. brassicae as a new promising start strain for a higher HupA yield.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-019-09897-7DOI Listing

Publication Analysis

Top Keywords

hupa production
16
hupa
9
alternaria brassicae
8
brassicae agf041
8
ache inhibition
8
production
6
production enhancement
4
enhancement acetylcholinesterase
4
acetylcholinesterase inhibitor
4
inhibitor huperzine
4

Similar Publications

Objectives: (1) To evaluate the potential of producing huperzine (Hup) and anticholinesterase (AChE) activities of nine native Lycopodiaceae species collected in Vietnam; (2) Isolation, identification and characterization of a novel fungus producing both HupA and HupB isolated from Lycopodium casuarinoides Spring.

Results: All methanolic extracts of nine plants showed AChE inhibition from 8.55 to 71.

View Article and Find Full Text PDF

Hexagonal boron nitride as a new ultra-thin and efficient anti-coking coating for jet fuel nozzles.

J Colloid Interface Sci

April 2025

School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

Article Synopsis
  • The pyrolysis coking of hydrocarbon fuels during cooling affects engine performance, and introducing a passivation layer with a high aspect ratio is a promising strategy.
  • A dense hexagonal boron nitride (hBN) film was deposited on nickel using chemical vapor deposition (CVD) as an effective anti-coking coating.
  • The study showcased that the hBN coating significantly inhibits coking by achieving coking inhibition rates of over 83% at various temperatures, highlighting its potential for improving engine reliability.
View Article and Find Full Text PDF

Huperzine A (HupA) is used in Alzheimer's disease (AD) therapy for its effective inhibition of acetylcholinesterase (AChE) and enhancement of cholinergic neuronal function. However, direct oral administration and injection of HupA cause side effects like nausea, anorexia, and rapid metabolism. Using a tripolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate (PBVHx), from the polyhydroxyalkanoate (PHA) family synthesized via synthetic biology, we present a novel AD therapy strategy with peritoneally administered PBVHx microspheres loaded with HupA (HupA-PBVHxMs).

View Article and Find Full Text PDF

Background: Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression.

View Article and Find Full Text PDF

Retention of strength and ion release of some restorative materials.

Odontology

September 2024

Department of Biomaterials Science and Turku Clinical Biomaterial Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland.

This study aimed to investigate the retention of strength in accelerated aging condition and ion release from an experimental fiber-reinforced bioactive flowable composite resin (Bio-SFRC), comparing it with various commercially available ion-releasing materials. The flexural strength of Bio-SFRC and other materials (Biodentine, TheraCal LC, Fuji II LC and Surefil one) was evaluated (n = 8) before and after hydrothermal accelerated aging. Ion concentrations of silica and phosphorus were measured after 1, 2, 3, 4, 7, 10, 14, and 21 days of specimen immersion in simulated body fluids (SBF) using UV-Vis spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!