Human telomeric G-quadruplexes are emerging targets in anticancer drug discovery since they are able to efficiently inhibit telomerase, an enzyme which is greatly involved in telomere instability and immortalization process in malignant cells. G-quadruplex (G4) DNA is highly polymorphic and can adopt different topologies upon addition of electrolytes, additives, and ligands. The study of G-quadruplex forms under various conditions, however, might be quite challenging. In this work, surface-enhanced Raman scattering (SERS) spectroscopy has been applied to study G-quadruplexes formed by human telomeric sequences, d[AG(TTAGGG)A] (Tel26) and d[(TTAGGG)T] (wtTel26), under dilute and crowding conditions. The SERS spectra distinctive of hybrid-1 and hybrid-2 G-quadruplexes of Tel26 and wtTel26, respectively, were observed for the sequences folded in the presence of K ions (110 mM) in a buffered solution, representing the diluted medium. Polyethylene glycol (5, 10, 15, 20, and 40% v/v PEG) was used to create a molecular-crowded environment, resulting in the formation of the parallel G-quadruplexes of both studied human telomeric sequences. Despite extensive overlap by the crowding agent bands, the SERS spectral features indicative of parallel G4 form of Tel26 were recognized. The obtained results implied that SERS of G-quadruplexes reflected not only the primary structure of the studied human telomeric sequence, including its nucleobase composition and sequence, but also its secondary structure in the sense of Hoogsteen hydrogen bonds responsible for the guanine tetrad formation, and finally its tertiary structure, defining a three-dimensional DNA shape, positioned close to the enhancing metallic surface. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-019-01894-z | DOI Listing |
Nat Commun
January 2025
Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.
View Article and Find Full Text PDFToxicol Mech Methods
January 2025
Environmental Carcinogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
During out-of-area military operations, the presence of carcinogenic and/or genotoxic agents has been reported, posing potential health risks to deployed soldiers. Military working dogs (MWDs), trained to detect explosives in the same environments as soldiers, could also serve as sentinel animals, providing valuable information on exposure to hazardous agents. These dogs can help identify environmental and potential adverse effects on their health and that of their handlers, possibly before relevant pathologies manifest.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China.
Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.
View Article and Find Full Text PDFBiol Direct
January 2025
Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.
View Article and Find Full Text PDFJ Bras Pneumol
January 2025
. Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói (RJ) Brasil.
Objective: Silicosis is a pneumoconiosis characterized by fibrosis of the lung parenchyma caused by the inhalation of silica particles. Silica dust inhalation is associated with inflammation and induction of oxidative stress in the lungs. This oxidative stress affects telomeres, which are short tandem DNA repeats that cap the end of linear chromosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!