Bladder cancer (BC) is the most common urinary cancer among men with a high rate of deaths despite the improved medical technology and treatment. Recent evidence demonstrated that Mex-3 RNA-Binding Family Member C (MEX3C) plays various roles in different biological activities, but its molecular mechanisms underlying the pathogenesis of BC remain unclear yet. The aim of this research was to explore the expression patterns of MEX3C and its biological functions in human BC. The Cancer Genome Atlas (TCGA) and Oncomine databases were jointly used to analyze the expression of MEX3C in BC and its correlation with the clinicopathological features, while real-time PCR and immunohistochemistry analysis were used to verify the predicted results. Wound-healing assay, Matrigel invasion assay, BODIPY staining and Western blot analysis were used in a cell model to assess the effect of MEX3C on the lipid metabolism, invasion and migration of BC and its mechanisms. MEX3C was highly expressed in BC tissues and cells compared with their normal counterparts, and its expression was positively correlated with the clinicopathological features, especially the invasiveness phenotype. Overexpression of MEX3C accumulated lipid droplets and promoted cell adhesion, invasion and migration. We further demonstrated that MEX3C regulated lipid metabolism and promoted tumor development and progression through activation of JNK signaling and upregulating the JNK downstream protein levels of sterol regulatory element-binding proteins-1, fatty acid synthase and acetyl-CoA carboxylase-1. Here we identified MEX3C as a new oncogene to promote bladder tumorigenesis by regulating lipid metabolism through Mitogen-activated protein kinase/c-Jun N-terminal kinase (MAPK/JNK) pathway. These findings suggest a new role of MEX3C in promoting BC tumorigenesis and provide a novel biomarker or molecular target for diagnosis or treating BC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503316 | PMC |
http://dx.doi.org/10.2147/OTT.S199667 | DOI Listing |
J Vet Res
December 2024
Institute of Biology, Pomeranian University in Słupsk, 76-200 Słupsk, Poland.
Introduction: The grayling ( L.) has several advantages over other fish species that make it attractive for aquaculture and invest it with importance for food security. The study assessed the effects of a β-glucan-enriched diet on biomarkers of oxidative stress, energy metabolism and lysosomal function in muscle tissue of European grayling ( L.
View Article and Find Full Text PDFFront Pharmacol
December 2024
School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China.
Introduction: The aim of this study is to examine the physiological effects of emodin on intestinal microorganisms and the liver in the BALb/c mice.
Method And Results: Following an 8-week administration of emodin at doses of 25, 50, and 100 mg/kg/day,pathological analyses revealed that emodin significantly reduced the colon length, induced colonic crypt inflammation,diminished the colonic mucus layer,and decreased the fluorescence intensity of colonic tight junction proteins ZO-1 and Occludin. Concurrently, 16S rDNA gene sequencing corroborated that emodin altered the diversity and composition of the intestinal microbiota by increasing the to ratio.
Mol Ecol Resour
January 2025
School of Life Sciences, Anhui University, Hefei, Anhui, China.
Emberiza buntings (Aves: Emberizidae) exhibit extensive diversity and rapid diversification within the Old World, particularly in the eastern Palearctic, making them valuable models for studying rapid radiation among sympatric species. Despite their ecological and morphological diversity, there remains a significant gap in understanding the genomic underpinnings driving their rapid speciation. To fill this gap, we assembled high-quality chromosome-level genomes of five representative Emberiza species (E.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892.
Establishing genotype-phenotype correlations in disorders of hereditary endocrine neoplasia is important for clinical screening, genetic counseling, prognostication, surveillance, and surgical strategy, and may also provide clues about disease pathogenesis. Important genotype-phenotype correlations are recognized, for example, in pheochromocytoma/paraganglioma and multiple endocrine neoplasia type 2A. The presence of such correlations has been less clear in other familial endocrine disorders associated with primary hyperparathyroidism including multiple endocrine neoplasia type 1 (MEN1), and the hyperparathyroidism-jaw tumor syndrome (HPT-JT).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
Purpose: Eyelid infiltrative basal cell carcinoma (iBCC) is the most common malignant tumor affecting the ocular adnexa, but studies on metabolic changes within its microenvironment and heterogeneity at the tumor invasive area are limited. This study aims to analyze metabolic differences among iBCC cell types using single-cell and spatial metabolomics analysis and to examine metabolic environment at the tumor invasive area.
Methods: Single-cell transcriptomic data of human basal cell carcinoma (BCC) were clustered and visualized using Uniform Manifold Approximation and Projection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!