Regulation of locomotor speed and selection of active sets of neurons by V1 neurons.

Nat Commun

National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

Published: May 2019

During fast movements in vertebrates, slow motor units are thought to be deactivated due to the mechanical demands of muscle contraction, but the associated neuronal mechanisms for this are unknown. Here, we perform functional analyses of spinal V1 neurons by selectively killing them in larval zebrafish, revealing two functions of V1 neurons. The first is the long-proposed role of V1 neurons: they play an important role in shortening the cycle period during swimming by providing in-phase inhibition. The second is that V1 neurons play an important role in the selection of active sets of neurons. We show that strong inhibitory inputs coming from V1 neurons play a crucial role in suppressing the activities of slow-type V2a and motor neurons, and, consequently, of slow muscles during fast swimming. Our results thus highlight the critical role of spinal inhibitory neurons for silencing slow-component neurons during fast movements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531463PMC
http://dx.doi.org/10.1038/s41467-019-09871-xDOI Listing

Publication Analysis

Top Keywords

neurons play
12
neurons
11
selection active
8
active sets
8
sets neurons
8
neurons fast
8
fast movements
8
play role
8
role
5
regulation locomotor
4

Similar Publications

(Fragile X messenger ribonucleoprotein 1), located on the X-chromosome, encodes the multi-functional FMR1 protein (FMRP), critical to brain development and function. Trinucleotide CGG repeat expansions at this locus cause a range of neurological disorders, collectively referred to as Fragile X-related conditions. The most well-known of these is Fragile X syndrome, a neurodevelopmental disorder associated with syndromic facial features, autism, intellectual disabilities, and seizures.

View Article and Find Full Text PDF

Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.

View Article and Find Full Text PDF

Parkinson's disease is characterized by the presence of α-synuclein (α-syn) primarily containing Lewy bodies in neurons. Despite decades of extensive research on α-syn accumulation, its molecular mechanisms have remained largely unexplored. Recent studies by us and others have suggested that extracellular vesicles (EVs), especially exosomes, can mediate the release of α-syn from cells, and inhibiting this pathway could result in increased intracellular α-syn levels.

View Article and Find Full Text PDF

The Novel miR_146-Tfdp2 Axis Antagonizes METH-Induced Neuron Apoptosis and Cell Cycle Abnormalities in Tree Shrew.

Neuropharmacology

January 2025

NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China. Electronic address:

Methamphetamine (METH) is a synthetic drug with potent addictive, relapse, and neurotoxic properties. METH abuse contributes to severe damage to the central nervous system, potentially causing cognitive impairments, behavioral changes, and neurodegenerative diseases. METH-induced neuronal damage is closely related to apoptosis and cell cycle abnormalities, while gene expression regulator microRNAs (miRNAs) may play extensive roles in this progress, but the specific mechanisms remain unclear.

View Article and Find Full Text PDF

The integration of different sensory streams is required to dynamically estimate how our head and body are oriented and moving relative to gravity. This process is essential to continuously maintain stable postural control, autonomic regulation, and self-motion perception. The nodulus/uvula (NU) in the posterior cerebellar vermis is known to integrate canal and otolith vestibular input to signal angular and linear head motion in relation to gravity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!