Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: In vivo use of monoclonal antibodies has become routine clinical practice in the treatment of human cancer. CD38 is an attractive target, because it has double roles, as a receptor and an ectoenzyme. Daratumumab, an anti-CD38 antibody, is currently in the clinical trials for multiple myeloma.
Results: Here we obtained a humanized anti-CD38 antibody, SG003, using SDR-grafting method. SG003 possessed stronger antigen binding activity than Daratumumab, and its epitope was far from that of Daratumumab, an anti-CD38 antibody currently in the clinical trials for multiple myeloma; besides, SG003 showed enhanced antibody-dependent cell-mediated cytotoxicity function and in vivo inhibitory efficacy of tumor growth in xenograft mice model.
Conclusion: SG003 seemed to be a good option to improve the curative effect of CD38-related cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6530185 | PMC |
http://dx.doi.org/10.1186/s12896-019-0524-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!