Background: Overfeeding reduces laying performance in broiler breeder hens, which is associated with obesity, hepatic steatosis and systemic inflammation. To unravel the underlying mechanisms governing the effect of feeding regimes on energy metabolism and egg production, a transcriptomics approach was carried out for screening differentially expressed genes (DEGs) in ovary, liver and adipose tissues of broiler chickens under ad libitum and restricted feeding.

Results: It showed that 289, 388 and 204 DEGs were identified in the adipose, liver and ovary, respectively. These DEGs were significantly enriched in phagosome pathway, lipid transport, activity and nutrient reservoir activity in ovary; steroid hormone biosynthesis and metabolism of xenobiotics by cytochrome P450 pathways in adipose tissue; and the metabolic pathways, peroxisome proliferator-activated receptor (PPAR) and Jak-STAT signaling pathway in liver. Estrogen receptor 1, identified as one of important hubs by constructing PPI network, was up-regulated in ad libitum group, which would make more apolipoproteins be transferred to ovary.

Conclusions: High expression of VTGs, APOB, CYBB and CTSS in ovary would induce excess lipid deposit, oxidative stress and potential damage to ovulation. Our results contribute to understanding effects of feeding regimes on metabolic regulation during egg production of broiler breeder hens and also provide new evidence of metabolic regulation from integrated multi-tissue processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532148PMC
http://dx.doi.org/10.1186/s12864-019-5801-3DOI Listing

Publication Analysis

Top Keywords

egg production
12
broiler breeder
12
breeder hens
12
production broiler
8
feeding regimes
8
metabolic regulation
8
identification key
4
key genes
4
genes molecular
4
molecular mechanisms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!