Native DNA strongly adsorbs to citrate-coated gold nanoparticles (AuNPs). The resulting composites (DNA/AuNPs) are valuable materials in many fields, especially in biomedicine. For this reason, the process of adsorption is a focus for intensive research. In this work, DNA adsorption to gold nanoparticles was studied using a molecular selection procedure followed by high-throughput DNA sequencing. The chemically synthesized DNA library containing a central N randomized fragment was sieved through four cycles of adsorption to AuNPs in a tree-like selection-amplification scheme (SELEX (Selective Evolution of Ligands by EXponential enrichment)). The frequencies of occurrence of specific oligomeric DNA motifs, k-mers ( k = 1-6), in the initial and selected pools were calculated. Distribution of secondary structures in the pools was analyzed. A large set of diverse A, T, and G enriched k-mers undergo a pronounced positive selection, and these sequences demonstrate faster and strong binding to the AuNPs. For facile binding, such structural motifs should be located in the loop regions of weak intramolecular complexes-hairpins with imperfect stem, or other portion of the structure, which is unpaired under selection conditions. Our data also show that, under the conditions employed in this study, cytosine is significantly depleted during the selection process, although guanine remains unchanged. These regularities were confirmed in a series of binding experiments with a set of synthetic DNA oligonucleotides. The detailed analysis of DNA binding to AuNPs shows that the sequence specificity of this interaction is low due to its nature, although the presence and the number of specific structural motifs in DNA affect both the rate of formation and the strength of the formed noncovalent associates with AuNPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b00661DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
12
dna
9
dna binding
8
molecular selection
8
binding aunps
8
structural motifs
8
selection
5
aunps
5
binding gold
4
nanoparticles prism
4

Similar Publications

Loading monocytes with magnetic nanoparticles enables their magnetic control without toxicity.

Front Bioeng Biotechnol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.

Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.

View Article and Find Full Text PDF

Nanoparticles in gynecologic cancers: a bibliometric and visualization analysis.

Front Oncol

January 2025

Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.

Background: Gynecological cancers are characterized by uncontrolled cell proliferation within the female reproductive organs. These cancers pose a significant threat to women's health, impacting life expectancy, quality of life, and fertility. Nanoparticles, with their small size, large surface area, and high permeability, have become a key focus in targeted cancer therapy.

View Article and Find Full Text PDF

In this study, we used two-dimensional electronic spectroscopy to examine the early femtosecond dynamics of suspensions of colloidal gold nanorods with different aspect ratios. In all samples, the signal distribution in the 2D maps at this timescale shows a distinctive dispersive behavior, which can be explained by the interference between the exciting field and the field produced on the nanoparticle's surface by the collective motion of electrons when the plasmon is excited. Studying this interference effect, which is active only until the plasmon has been dephased, allows for a direct estimation of the dephasing time of the plasmon of an ensemble of colloidal particles.

View Article and Find Full Text PDF

Triclosan (TCS) is used as an antibacterial agent in various products. One of the major issues associated with TCS is its limited solubility in aqueous media, which can reduce its effectiveness against bacteria. In this study, we enhanced the aqueous solubility and antibacterial activity of TCS by using a re-dispersible emulsion powder stabilized with gold nanoparticles (GNPs).

View Article and Find Full Text PDF

Decentralized testing using multiplex lateral flow assays (mLFAs) to simultaneously detect multiple analytes can significantly enhance detection efficiency, reduce cost and time, and improve analytic accuracy. However, the challenges, including the monochromatic color of probe particles, interference between different test lines, and reduced specificity and sensitivity, severely hinder mLFAs from wide use. In this study, we prepared polydopamine (PDA)-coated dyed cellulose nanoparticles (dCNPs@P) with tunable colors as the probe for mLFAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!