The assembly of magnetic Janus particles in a quasi-two-dimensional environment with a dipole moment shifted from the center and oriented perpendicular to the Janus cap height is studied with optical microscopy and found to adhere to a general model accounting for the particle dipole strength, the particle Brownian dynamics, the initial concentration, and, most importantly, the magnetic dipole shift. The particle aggregates are treated as diffusing spherocylinders with length and width dependent on the magnetic dipole shift. Aggregation occurs irreversibly once particle aggregates enter within a distance at which Brownian and dipole forces are equal, defined as the capture distance. The capture distance model is expressed as a general Smoluchowski coagulation rate kernel for chains of an arbitrary length, dipole strength, and dipole shift, allowing for aggregation rate predictions for related systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b00163DOI Listing

Publication Analysis

Top Keywords

dipole shift
12
dipole strength
8
magnetic dipole
8
particle aggregates
8
capture distance
8
dipole
7
particle
5
measuring modeling
4
modeling predicting
4
magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!