Interaction of Particles with Surfactant Thin Films: Implications for Dust Suppression.

Langmuir

Department of Applied Mathematics, Research School of Physics , Australian National University, Mills Road , Acton , ACT 2601 , Australia.

Published: June 2019

Understanding the interaction of particles with foams is important in antifoaming applications and dust suppression. In the former, the aim is for the particles to break the foam, whereas in the latter it is desirable that the stability of the foam is maintained or enhanced. The interaction of particles of different wettabilities with thin surfactant films is investigated with a Sheludko cell, enabling the thinning and rupture of the films to be studied in the presence and absence of a particle, using white-light interferometry. The films were prepared from the surfactant cetyltrimethylammonium bromide and a commercial dust suppression foaming agent. The film lifetimes are extended upon the addition of hydrophilic particles and reduced upon the addition of hydrophobic particles with advancing contact angles >90°. The Laplace pressure in the film surrounding a particle is calculated as a function of the contact angle and particle size, revealing that the meniscus surrounding hydrophilic particles has a positive Laplace pressure, which increases the lifetime of the film.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b04230DOI Listing

Publication Analysis

Top Keywords

interaction particles
12
dust suppression
12
hydrophilic particles
8
laplace pressure
8
particles
6
particles surfactant
4
surfactant thin
4
films
4
thin films
4
films implications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!