Proton-Coupled Electron Transfer of Plastoquinone Redox Reactions in Photosystem II: A Pump-Probe Ultraviolet Resonance Raman Study.

J Phys Chem Lett

Photosynthesis Research Center, Key Laboratory of Photobiology , Institute of Botany, Chinese Academy of Sciences , No. 20, Nanxincun , Xiangshan, Beijing , 100093 , China.

Published: June 2019

Plastoquinones (PQs) act as electron and proton mediators in photosystem II (PSII) for solar-to-chemical energy conversion. It is known that the redox potential of PQ varies in a wide range spanning hundreds of millivolts; however, its structural origin is not known yet. Here, by developing a pump-probe ultraviolet resonance Raman technique, we measured the vibrational structures of PQs including Q and Q in cyanobacterial PSII directly The conversion of Q to Q in the Mn-depleted PSII is verified by direct observation of the distinct Q vibrational bands. A frequency upshift of the ring C=O/C=C stretch band at 1565 cm for Q was observed, which suggests a π-π interaction between the quinone ring and Trp253. In contrast, proton-coupled reduction of Q to QH upon light-driven electron transfer is demonstrated in PSII without Q bound. The H-bond between Q and His214 is likely the proton origin of this proton-coupled electron transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.9b00959DOI Listing

Publication Analysis

Top Keywords

electron transfer
12
proton-coupled electron
8
pump-probe ultraviolet
8
ultraviolet resonance
8
resonance raman
8
transfer plastoquinone
4
plastoquinone redox
4
redox reactions
4
reactions photosystem
4
photosystem pump-probe
4

Similar Publications

Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (NO) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

Design Criteria for Active and Selective Catalysts in the Nitrogen Oxidation Reaction.

ACS Phys Chem Au

January 2025

University of Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Universitätsstraße 5, Essen 45141, Germany.

The direct conversion of dinitrogen to nitrate is a dream reaction to combine the Haber-Bosch and Ostwald processes as well as steam reforming using electrochemistry in a single process. Regrettably, the corresponding nitrogen oxidation (NOR) reaction is hampered by a selectivity problem, since the oxygen evolution reaction (OER) is both thermodynamically and kinetically favored in the same potential range. This opens the search for the identification of active and selective NOR catalysts to enable nitrate production under anodic reaction conditions.

View Article and Find Full Text PDF

NbO(OH) has emerged as a highly attractive photocatalyst based on its chemical stability, energetic band positions, and large active lattice sites. Compared to other various photocatalytic semiconductors, it can be synthesized easily. This study presents a systematic analysis of pristine and doped NbO(OH) based on recent developments in related research.

View Article and Find Full Text PDF

Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability.

View Article and Find Full Text PDF

The selective amination of aromatic C-H bonds is a powerful strategy to access aryl amines, functionalities found in many pharmaceuticals and agrochemicals. Despite advances in the field, a platform for the direct, selective C-H amination of electronically diverse (hetero)arenes, particularly electron-deficient (hetero)arenes, remains an unaddressed fundamental challenge. In addition, many (hetero)arenes present difficulty in common selective pre-functionalization reactions, such as halogenation , or metal-catalyzed borylation and silylation .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!