Fully Spin-Polarized Nodal Loop Semimetals in Alkaline Metal Monochalcogenide Monolayers.

J Phys Chem Lett

Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics Ultrafine Optoelectronic Systems, and School of Physics , Beijing Institute of Technology, Beijing 100081 , China.

Published: June 2019

Topological semimetals in ferromagnetic materials have attracted an enormous amount of attention due to potential applications in spintronics. Using first-principles density functional theory together with an effective lattice model, here we present a new family of topological semimetals with a fully spin-polarized nodal loop in alkaline metal monochalcogenide MX (M = Li, Na, K, Rb, or Cs; X = S, Se, or Te) monolayers. The half-metallic ferromagnetism can be established in MX monolayers, in which one nodal loop formed by two crossing bands with the same spin components is found at the Fermi energy. This nodal loop half-metal survives even when considering the spin-orbit coupling owing to the symmetry protection provided by the mirror plane. The quantum anomalous Hall state and Weyl-like semimetal in this system can be also achieved by rotating the spin from the out-of-plane to the in-plane direction. The MX monolayers hosting rich topological phases thus offer an excellent platform for realizing advanced spintronic concepts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.9b00906DOI Listing

Publication Analysis

Top Keywords

nodal loop
16
fully spin-polarized
8
spin-polarized nodal
8
alkaline metal
8
metal monochalcogenide
8
monochalcogenide monolayers
8
topological semimetals
8
nodal
4
loop
4
loop semimetals
4

Similar Publications

Background: Gyrodactylus von Nordmann, 1832, a genus of viviparous parasites within the family Gyrodactylidae, contains one of the largest nominal species in the world. Gyrodactylus pseudorasborae Ondračková, Seifertová & Tkachenko, 2023 widely distributed in Europe and China, although its mitochondrial genome remains unclear. This study aims to sequence the mitogenome of G.

View Article and Find Full Text PDF

Nodal loop semimetals are topological materials with drumhead surface states characterized by reduced kinetic energy. If the Fermi energy of such a system is near these nondispersive states interaction among charge carriers substantially impacts their electronic structure. The emergence of magnetism in these surface states is one of the possible consequences.

View Article and Find Full Text PDF

Ideal hourglass nodal loop state in the monolayer lithium hydrosulfide.

Front Chem

December 2024

The Engineering and Technology Research Center of Myocardial Prevention and Rehabilitation, The Fourth Medical College of Harbin Medical University, Harbin, China.

In recent years, the exploration of topological states within two-dimensional materials has emerged as a compelling focus, complementing their three-dimensional counterparts. Through theoretical calculations, we unveil the exceptional topological state in the monolayer lithium hydrosulfide, where an ideal hourglass nodal loop is identified. Notably, this nodal loop is characterized by only four bands, representing the simplest configuration for realizing hourglass dispersion.

View Article and Find Full Text PDF

Monolayer MXO as potential 2D altermagnets and half-metals: a first principles study.

J Phys Condens Matter

November 2024

Department of Electronic Science and Engineering, Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300350, People's Republic of China.

Realizing novel two-dimensional (2D) magnetic states would accelerate the development of advanced spintronic devices and the understandings of 2D magnetic physics. In this paper, we have examined the magnetic and electronic properties of 20 dynamically stable and exfoliable MXO (M = Ti-Ni; X = S-Te; excluding CoTeO). It has been unveiled that [XO]-and [M]-crystal fields govern the M-3orbital splittings in MXO.

View Article and Find Full Text PDF
Article Synopsis
  • - Hemorrhage is the main cause of preventable death in trauma situations, leading to military and civilian advancements in medical practices, particularly through the use of tourniquets to manage extremity bleeding and save lives.
  • - While tourniquets have significantly decreased deaths from bleeding in military settings, noncompressible hemorrhage still poses a major risk, especially before patients receive definitive medical care.
  • - The study explores using a small, disposable pressure monitor during resuscitative endovascular balloon occlusion of the aorta (REBOA) to enhance blood pressure monitoring, facilitate better resuscitation practices, and reduce the need for blood products in extreme environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!