Effect of Redox Active Ligands on the Electrochemical Properties of Manganese Tricarbonyl Complexes.

Inorg Chem

Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California , United States.

Published: June 2019

The synthesis, structural characterization, and electrochemical behavior of the neutral Mn(azpy)(CO)(Br) 4 (azpy = 2-phenylazopyridine) complex is reported and compared with its structural analogue Mn(bipy)(CO)(Br) 1 (bipy = 2,2'-bipyridine). 4 exhibits reversible two-electron reduction at a mild potential (-0.93 V vs Fc in acetonitrile) in contrast to 1, which exhibits two sequential one-electron reductions at -1.68 V and -1.89 V vs Fc in acetonitrile. The key electronic structure differences between 1 and 4 that lead to disparate electrochemical properties are investigated using a combination of Mn-K-edge X-ray absorption spectroscopy (XAS), Mn-Kβ X-ray emission spectroscopy (XES), and density functional theory (DFT) on 1, 4, their debrominated analogues, [Mn(L)(CO)(CHCN)][CFSO] (L = bipy 2, azpy 5), and two-electron reduced counterparts [Mn(bipy)(CO)][K(18-crown-6)] 3 and [Mn(azpy)(CO)][CpCo] 6. The results reveal differences in the distribution of electrons about the CO and bidentate ligands (bipy and azpy), particularly upon formation of the highly reduced, formally Mn(-1) species. The data show that the degree of ligand noninnocence and resulting redox-activity in Mn(L)(CO) type complexes impacts not only the reducing power of such systems, but the speciation of the reduced complexes via perturbation of the monomer-dimer equilibrium in the singly reduced Mn(0) state. This study highlights the role of redox-active ligands in tuning the reactivity of metal centers involved in electrocatalytic transformations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b00652DOI Listing

Publication Analysis

Top Keywords

electrochemical properties
8
bipy azpy
8
redox active
4
active ligands
4
ligands electrochemical
4
properties manganese
4
manganese tricarbonyl
4
tricarbonyl complexes
4
complexes synthesis
4
synthesis structural
4

Similar Publications

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

Recent emerging trends in dendrimer research: Electrochemical sensors and their multifaceted applications in biomedical fields or healthcare.

Biosens Bioelectron

January 2025

Department of Analytical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, 02040, Türkiye. Electronic address:

Dendrimers enhance the selectivity and sensitivity of sensors through their synthetic, highly branched, three-dimensional structures and large surface area. This unique architecture enables precise functionalization with various recognition elements, significantly improving the specificity and sensitivity of electrochemical sensors for detecting disease markers, biomolecules, and environmental pollutants. Dendrimer-based electrochemical sensors offer promising advancements in healthcare, such as detecting biomarkers for heart disease, monitoring blood glucose levels, and sensitively determining cancer-related proteins.

View Article and Find Full Text PDF

Low-Impedance Hybrid Carbon Structures on SiO: A Sequential Gas-Phase Coating Approach.

Small Methods

January 2025

BCMaterials, Basque Centre for Materials, Applications and Nanostructures; UPV/EHU Science Park, Leioa, 48940, Spain.

Carbon coating on SiO surface is crucial for enhancing initial Coulombic efficiency (ICE) and cycling performance in batteries, while also buffering volume expansion. Despite its market prevalence, the effects of the carbon layer's quality and structure on the electrochemical properties of SiO remain underexplored. This study compares carbon layers produced via gas-phase and solid-phase coating methods, introducing an innovative technique that sequentially uses two gases to develop a low-impedance hybrid carbon structure.

View Article and Find Full Text PDF

Ultrahigh-voltage potassium-ion batteries (PIBs) with cost competitiveness represent a viable route towards high energy battery systems. Nevertheless, rapid capacity decay with poor Coulombic efficiencies remains intractable, mainly attributed to interfacial instability from aggressive potassium metal anodes and cathodes. Additionally, high reactivity of K metal and flammable electrolytes pose severe safety hazards.

View Article and Find Full Text PDF

Phase-Engineered Bi-RuO Single-Atom Alloy Oxide Boosting Oxygen Evolution Electrocatalysis in Proton Exchange Membrane Water Electrolyzer.

Adv Mater

January 2025

Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China.

Engineering nanomaterials at single-atomic sites can enable unprecedented catalytic properties for broad applications, yet it remains challenging to do so on RuO-based electrocatalysts for proton exchange membrane water electrolyzer (PEMWE). Herein, the rational design and construction of Bi-RuO single-atom alloy oxide (SAAO) are presented to boost acidic oxygen evolution reaction (OER), via phase engineering a novel hexagonal close packed (hcp) RuBi single-atom alloy. This Bi-RuO SAAO electrocatalyst exhibits a low overpotential of 192 mV and superb stability over 650 h at 10 mA cm, enabling a practical PEMWE that needs only 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!