A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure and Dynamics of Collagen Hydration Water from Molecular Dynamics Simulations: Implications of Temperature and Pressure. | LitMetric

Dynamics of water molecules in hydrated collagen plays an important role in determining the structural and functional properties of collagenous tissues. Experimental results suggest that collagen-bridging water molecules exhibit dynamic and thermodynamic properties of one-dimensional ice. However, molecular dynamics (MD) studies performed to date have failed to identify icelike water bridges. It has been hypothesized that this discrepancy is due to the experimental measurements and computational MD analysis having been performed on very different systems: complete tissues with large-scale collagen fiber assemblies and individual tropocollagen fragments, respectively. In this work, we explore ways of emulating a tissuelike macromolecular environment in MD simulations of hydrated collagen without increasing the size of the system to computationally prohibitive levels. We have investigated the effects of temperature and pressure on the dynamics of a small hydrated tropocollagen fragment. The occupancy and bond energies of interchain hydrogen bonds were relatively insensitive to temperature, suggesting that they play a key role in the stability of the collagen triple helix. The lifetimes of water bridges lengthened with decreasing temperature, but even at 280 K, no bridging water molecules exhibited icelike dynamics. We discuss the implications of these findings for the ability to emulate tissuelike conditions in hydrated collagen.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.9b03078DOI Listing

Publication Analysis

Top Keywords

water molecules
12
hydrated collagen
12
molecular dynamics
8
temperature pressure
8
pressure dynamics
8
water bridges
8
collagen
6
water
6
dynamics
5
structure dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!